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Navy's personnel selection, assignment, and training requirements.

The Theory of Underlying Internal Processes (UIPs) was described in the first volume of
this series. In that document, it is shown that a factor analysis of the correlations
(across subjects) of the response times for a battery of tasks should lead to the discovery
of independent factors which represent the underlying processes which are common to two or
more tasks in the battery, and that loadings on those factors must all be zero or positive.
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entitled Random Sampling of Domain Variance (RSDV) and is seen as alternative to the
Analysis of Variance (ANCVA) method which has not been particularly successful in producing
results which generalize to the real world.

Development and elucidation of the Random Sampling of Domain Variance experimental
methodology has been accomplished under the Navy's special focus program entitled
Augmentation of Human Factors Technology Efforts which has been jointly sponsored by the
Engineering Psychology Programs of the Office of Naval Research and the Naval Air Systems
Command.
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o THE PROBLEM
e
g Modern aviation weapon systems impose increasingly complex and highly
L demanding command/control and information processing requirements on aircrew
i personnel. Improved assessment methods and more complete knowledge of human
%\}: performance capabilities and limitations in high-demand, multi-task
3;{: environments are needed to better match operator to the changing human roles
5&;: in emerging aviation systems, The human engineering and human performance
") assessment and prediction technologies have, unfortunately, failed to keep

K, pace with increasingly sophisticated airborne weapons systems currently

‘tg being developed.

A : — . . .
'fg“ The paucity of scientifically-based knowledge concerning the underlying
't%J human perceptual, cognitive, and motor processes makes it impossible to

confidently influence system design or to te able to predict human and/or
system performance in complex situations. This lack of knowledge stems
primarily from not having firmly established: (a) the numbers of, the nature
of, the underlying internal processes, (b} the distributions of time and
accuracy capabilities for those processes, (c) the extent to which
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gﬁf‘ individual differences among those processes are stable across tasks which
o use those processes, (d) the nature or identification of task factors which
f} cause (or accompany) the invoking of some processes but not others, and (e)
:413 possible fatigue, recovery, and/or interference in internal processing
::3? brought about by repeated and/or competing demands on those processes.
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%:iﬁ Resolution of these basic problems is seen as central in elevating both

human engineering design/evaluation and human performance assessment/
prediction technologies to a more responsive level for the Navy's RDT&E
system acquisition prccess and for meeting the Navy's personnel selection,
assignment, and training requirements.
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The Theory of Underlying Internal Processes (UIPs) was described in the
first volume of this series. In that document, it is shown that a factor
analysis of the correlations (across subjects) of the response time: for a
battery of tasks should lead to the discovery of independent factors which
represent the underlying processes which are common to two or more tasks in
the battery, and that loadings on those factors must all be zero or
positive. Such a factor structure is referred to as one having "positive
manifold." This volume describes the modifications to the Hierarchicail
Factor Analysis (HFA) nceded to arrive at such structures. This volume
} contains a discussion of a new experimental methodology which permits the o
- simultaneous 1investigation of a large number of experimental variables each .

K of which may have many possible levels. The need for such a methodology
stems from the complex unature of tasks and environmental situations of
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interest to the Navy. The new technique is entitled Random Sampling of :;Q

Domain Variance (RSDV) and is seen es alternative to the Analysis of o

I Variance (ANOVA) method which has not been particularly successful in T
RERET: producing results wwhich generalize to the real world. A
E<IN =
In addition to the Theory of Underlying Internal Processes (presented ﬁ}ﬁ

in volume one), the development of the methcd for obtaining positive iii

manifold factor structures (presented in volume two), and the Random lii

Sampling of Domain Variance (RSDV) method described in this volume, two T€§
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other significant methodological developments have arisen during this
project and are discussed in detail in the other volumes of this series:

Volume 4 - Task Domains of Naval Flight Officers (NFOs).

Volume 5 - Special Computer Applications in UIP/RSDV Studies.
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{. INTRODUCTION

/
The Random Sampling of Domain Variance (RS5DV) concept presented

here represents a new approach for experimental design and analysis. Much
dissatisfaction has been expressed for many years over the inability of

results derived from Analysis of VYariance {ANOYA) studiec to be applied to

-——— .
v
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practical probleme of the real world. These problems are well documented

>
3

and wi1ll be discussed 1n subsequent sections along with how ANDVA, 1tself,

contributes to those problems. The advantages and disadvantages of both

B oh e S e
als 29 -y

traditional experimental technigues and field studies are compared, and

o

x

both are found wanting. The RSDV concept represents a novel and
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rationally defensible approach to obtaining results, based on data

‘-'v

collected 1n laboratory settings, which should more validly generalize to
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the real world ard, thus, prove valuable to psychologists of all walks,

B

regardless of whether they have a theoretical or practical bent. The RSDY

xi: ‘

ot 2y
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concept aslso appears to furnish an excellent bridge to link laboratory and

ti1eld studies.
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The major feature of the RSDV concept i1nvolves the extensive
usage of random sampling theory, on which virtually all tests of

significance are based. HBecause of this, the RSDV concept represents a

B g 83 n £ &

natural progression in statistical methods, and one which, hopefully, will

be readily grasped by most behavioral scientists and practitioners. As

x

>

with any new method, standard and convenient procedures need to be
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developed so that RSDV users can report their studies in formats easily

CoiE
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understoed by others 1n the field. While no pretense is made that this

¥

type of effort has, i1n any way, been completed, at least some effort has

2
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been made toward this goal. Some initial suggestions have been provided
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for researchers on the activities required in conducting RSDV studies and

how investigators might report both these activities and the findings they

obtain from such studies.
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7R DISSATISFACTION WITH EXPERIMENTAL RESULTS

Psychology has long sufiered from an enormous gulf between the
accrual of experimental recsults collected 1n laboratory settings and the
applicabirlity of these same results to practical situations ot the real
world. MNearly a decade ago, Simon (1975) documented the widespread
dicappeointment, dissatisfaction, and disillusionment with the practical
value of results from laboratory experimentation 1n all firelds of
psychology. Hic paper reviewed nearly 24( analysis of variance {ANOVA]

studies from 118 articles published 1n the journal Human Factors during

the fourteen yearcs between 1958 and 1972. Among his findings were that
over 92 percent of those studies 1nvestigated three or fewer experimental
varrables., On the average, these variablecs accounted for only 45 percent
vt the total variance. Over 98 percent of thece studies i1nvestigated four

or ftewer variables and accounted for only 61 percent of the variance.

Durppp*te (19662, 1n his review of four American Psychological
Association tAPA) journals, had found similar results nearly a decade
earlier. 1[It should be clear to mocst psychologists that human performance
1n the complex, real world i1c geverned by far more than three or four
variables. Thus, the resulte which Simon and Dunnette found certa:nly
should not astonish ue. Indeed, we would be more surprised 1f so few
var1ables were tc be respcnsible for so much varrance 1n human performance
in real world situations. Simon, however, pointed out that experimenters,
tco often, art:ificially enhanced the proportion of variance accounted for
by ueing 3averaged rather than actual scores i1n their analyses. To this
criticicsm of ANOVA users, 1t should also be mentioned that, often, only
iwo highly divergent levels of an experimertal var:able are :nvectigated.
This practice, by removing the central porticn of the possible effects,

will alsc result 1n cigniticant overectimates of real worlo variance that
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1s actually explainable. For both ot these reasons, the 1dentical
variables i{which apparently work so well 1n iaboratory settings) can be
expected to account for far less variance i1n the reail world. This
nhenomena, which has been experienced all teco frequently, has lead, 1n
part, to the disappointment, dissatistaction, and disillusionment

mentioned earlier.

The widespread acceptance and advocacy of ANDYAR, a technigue
champicned for so long by many psychelogists as the "preferred"
experimental design and analysic technique, may be, perhaps, the real
culprit. The ready availability of ANOVA, with its statistical defensible
rationale, 1n1trally offered experimental psychology the scientifac
respectability 1t originally needed and which 1t had been seeking. At the
same time, however, 1t must also be admitted that the wholesale embracing
of ANOVA, with 1ts lack ot ability to simultaneously 1nvestigate many
ditferent levels of a large numb.- of experimental variables, ultimately
has delayed psycholpgy from becoming the scientific discipline capable of
predicting and/or explaining the behavior of humans confronted with the

complex situations of the real world.

ro
J

a2 A BRIEF HISTORY OF ANOVA

It is desirable to he hriefly review the fi1fty-year history of
the analvsis of variance technique and how 1t came to play such a dominant
role 1n experimental psychology. ANOVA, as many now know, is a technique
borrowed from procedures originally developed for agricultural research.
k. A. Fisher (1934), the leading proponent and early populariser of ANOVA,
pointed out that ANDVA's "one claim to attention lies in its convenience."
First, 1t provided a convenient procedure for summarizing a "sass of

statisticel data,” a task which was far more difficult in the 1930= when
data analysis calculations were manually intensive and fraught with
opportunities for making errors. Secondly, Fisher pointed out that ANOVA
was “"convenjent in facilitating and reducing to a comxmon fore all the

tests of significance which we may want to apply."
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" Fisher's major contributions were i1n the area of tests of Ffﬁ~‘
significance, and 1t 1s certainly understandable that he might favor a EQEJ»
procedure that emphasized this aspect of stat.stics even 1f 1t neglected t'\k;
reporting the relationships between the experimental variables and the Ry

Ryl
criterion. What Fisher did was to greatly emphasize the i1ssue of J&FE»

L‘-.":L =f
statistical significance over that of practical signiticance. One cannot ﬂ};é
help but wonder 1f Karl Pearson, who had given correlation theory 1ts &ii ¢
mathematical foundations, would not have selected a more balanced ﬁ_

e

presentation of both the statistical and practical results of studies.
But by 1933, Pearson had retired from the scene. Fisher had succeeded him

Y
to the prestigious chair of the Galton Professorship at University College f‘lr

1n London and had, thus, 1nherited the most influential position in *7'

statistics at that time. If Fisher advocated ANOYA, it must be qond! It tifgﬁ
is worth mentioning that, while ANOVA represented a new methodology by ii;it
which to accomplish various calculations and a new way to present and L{{QJ

summarize one's results, it neither invented the concept of tests of
A \
] . . . e
significance, nor created any new tests. Instead, 1t adopted those which xﬁ:

had been completely worked out in the early 1920s. a0

While ANOVA gained some early advocates and disciples, its
usefulness was certainly being questioned by other leaders in statistics.
Peters and Van Voorhis (1940), for example, in a faintly disguised s

allusion to ANOVA's origin in agricultural research, stated, "It is always

7| e

pedantic to make forced use of statistical devices borroned from another :
field when they only poorly fit." Peters and Van Yoorhis made a large ié%ﬁ'
distinction between the type of research which could make use of ANOVA and :i:};
what they considered to be "positive" or "constructive" research. They agi
acknowledged that ANDVA could be used as an initial step to make a “rough, ?ﬁ -
prelininary test" of a hypothesis before "going to the expense oy the :Ei;ﬂ
placorate setup needed for a thorough investigation. ... But for the }:Eﬁ;f

positive side of research, the investigator will need the standard

=
e

he oty
H’

I
‘;,A

. procedures of classical statistics, such as correlation, curve fitting, ::‘;(
o and contrast of correlated matched groups., Constructive research is just {;i:g
iié ready to begin where analysis of variance leaves off." To conclude that
:}}: such sentiments irritated the many advocates of ANOVA would be an

x4

i

understatement. Such comments were but the earliest exchanges of a
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continuing disagreement between the proponents of the ANOVA approach and

the advocates of classical correlational approaches. Even today, there

are still remnants of misunderstanding on both sides of this issue.

Despite such dire warnings and reservations, the convenmience of
the ANOVA procedure did find increasingly rapid acceptance among many
psycholoqgists who preferred to investigate hypotheses about the effect of
one or, perhaps, two variables on some criterion of performance. Studies
which 1nvestigated only one, two, or three variables were (and still are)
relatively easy and 1nexpensive to conduct, and ANOVA offered a convenient
procedure and an acceptable way of reporting research findings that made
them readily publishable. Soon, both courses and textbuoks appeared
which, 1n a large measure, helped to i1nstitutional:ze the usage of ANOVA

among many aspiring psychologists.

Among the well known authors of those early books favoring ANOVA
were Cochran and Cox (1950, 1937). In the preface to the 1957 edition of
their book on experimental designs, they discussed the growing usage of
-N0ve &t that tiwe. T-ev state.  "Apother encouraging trend is that
Norkers in these areas, although still willing to utilize appropriate
designs taken from agricultural experimentation, have begun to examine
their own problems of experimentation and to produce new designs better
suited to their particular conditions." It i1s of some interest to note

their acknowledgment of the predominance of univariate studies at that

time when they stated, "The recent literature also reflects a nove toward "
greater depth and comprehensiveness in experinental work, as instanced by E_t::{
numerous papers devoted to experimentation with more than one factor." E}ﬂ.}
gk

2 ol FIXED, KRANDOM, AND MIXED EFFECTS MODELS IN ANOVA =

No ANOVA discussion, however brief, should neglect the
distinction between "fi1xed," “"random,” and "mixed" effects models employed
by that technique. Other sources can provide far more exztensive ém*ﬁﬂ!
discussions of this topic, so only the briefect of treatmente of this ;:ﬁ;¢$
subject wi1ll be presented here. The bacsic distinction among the various E:;ﬁ%j
models centers on how one decides which levels of a given experimental };%:if

variable will be used 1n an experiment. If the researcher arbitrarily i d o
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makes this decision, regardless of how rational or irrational the reasons
may be, then the levels of that experimental variable are deemed to be
"fixed" {(i.e., by the experimenter). On the other hand, i1f the particular
levels to be used for an experimental variable are chosen randomly, then
the levels of that variable are said to be "random." If the levels of all
experimental variables are fixed, then the researcher is using a "fixed
etfects model." Conversely, if all of the levels of all of the
experimental variables are random, then the researcher is using a "random
effects model." Finally, if any of the variables differ (as to being

ti1xed or random), then a "mixed effects model” 15 being used.

It 1s worth roting that the primary concern here 15 not with the
actual number of levels of a variable that are chosen to be studied, but
merely with how the particular levels used were selected by the
researcher. This may, at first, appear as a foolish concern since one
could easily maintain that the particular levels f{especially 1f tnere are
only two) arbitrarily "fi1xed" by the researcher might have occurred 1f the
levels had been seleciec randomly. Nevertheless, the concern 15 real
because the choice between fixed or random variables determines what
inferences can be made (and how one tests the significance of one’s
tindings). Hayes .:1577) appropriately concludes, 1n his discussion of
this problem, that "gll the inferences made under (tne fixed effects
podel) concern means (and differences among means)" while "the inferences

vade using (the randop effects wnodel) deal with ... the variance of the

population of effects actually sampled by the experimenter.”

As obviously useful as the results from studies using the random
effects model might appear to be for the practitioners 1n the real wo
there are those wnc nave maintailned that 1t 1s unneeded by peychologisy
A. E. Edwards (1960}, for example, stated, "There may be isolated
instances in which (the randon effects nodel) can be justified for a
behavioral science experiment, but, in general, this wodel seens
unrealistic, The fixed effects sodel and the rixed nodel seem to be puch
closer to the realities of experipentel procedures in the behavioral

sciences.”
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2.8 THE PRACTICAL LIMITATIONS OF ANOVA

Hany writers perceive, 1n ANOVA, the possibilities for
simultaneously handling many different factors (i.e., experimental
variables). Bailey (1971), for example, stated "The most important
contribution of the analysis of variance is the notion of the wultiple-

factor experiments ... (which) pernit the richness and complexity of

, behavior to emerge." It 1s, of course, true that ANOVA is theoretically

{: capable of handling any number of variables, each of which might Lo
rﬁ theoretically have a large npumber of levels. Such an experiment, if EE:V
{jﬁ carried out, would, perhaps, permit the "richness and complexity of ;%t{l
{&?, behavior to emerge." It 1s, however, as Bailey states, unfortunately, Q&Ef::
R more of a "notion" than something that can be realized. In fact, 1t 1s A
}ig but a promicse, destined to remain forever unfulfilled. The most obvious Eg??'
;?ﬁ reason for this conclusion is that as one adds more and more independent Ei__
 §§ variables and more and more levels in each variable, ANOVA demands ;; 5
}i' exponentially 1ncreasing amounts of data. A factorial experiment, for iff
:a ' instance, with F factors and L levels in each factor reguires LF data .
_iﬁ cells, WMWith small numbers of factors and levels, this does not present a
ﬁtj serious problem. A three-factor experiment, for example, with four levels

:& in each requires only 64 (= 43) data cells; not an insurmountable S
:{E problem. But even an eight-factor problem with six levels in each §§§¥25
1_; requires over a million and a half data cells., A ten-factor problem with Eﬁbﬁﬁ
ii’ ten levels i1n each would require ten billion data cells! Even if a é};{

! researcher could fi11l 500 data cells in an hour, it would take more than e
gi& 2000 years to collect the data required. And this would be true only i+

%g the researcher could work 24 hours a day'
. ﬁ' N

_ 0f course, many clever designs have been devised for ANOVA
.;ﬁh which, somewhat, reduce the technique’'s i1nsatiable appetite for data. But
;f: these designs cannot accomplish this without sacrificing some ability to
f‘ﬁ do that which ANOVA originally set out to do (1.e., to test for the

f? presence of all main effects and all possible i1nteractions). The fact
?E? must be faced; ANDVA 1s a less and less effective tool as the research

Fiz problem becomes more complex and interesting. ANOVA may always remain a T
i,éi "convenient" method for i1nvestigating a few levels cf a few factors at a {i:;
- time, but Peters and Van Voorhis were correct in their original assessment

-(‘ ’ : v M a4 e T
/\.‘.?I‘n. '__ .Fu)‘-. J‘N L h\._._,‘. _-,{,),-.,-_p_-_.-_ﬂ._.‘\.f.f_;-r-}\.

r-,)r s{ y

::QS’\ \‘ _-ﬁ - 1.-‘ y\_J(_v\_-twca _-r---l-*;‘,‘. .5‘1;,..)' u \ . J-\""’-w_".‘n}g- ‘2.\-.-_"""‘.-"."'-y.‘.n:-'_:_»:::',:*
P ‘,- by &C

. » ~, Mo ACES “» o n
" . W )' .y A ) R
‘”"r"r o " -" e \v.‘ .(3. T .’r!;;‘- “r

n 0 AU A L o e 4»¢m



Gad Va bl bah sa a0 6 .,,r;. AT AR RS AR AT b e A Y R ALK 0V VA e A s A AV AT A A A, v iy oagaifabiiad av Vadfab Juh g aiia v b aa e igab il da iy 3

A
N
T
‘__.*_g.
ot nNOVA; constructive research for the complex, real world 15 just ready -tkﬁt
to begin where analysis of variance leaves off' Et:,;
el
ANOVA was always predominantly concerned with "testina the null E?‘E
hypothests,” terminology now firmly 1mplanted 1n our veccabularies for
which we owe Fisher an immense debt of gratitude. This very proper
concern over whether results obtained 1n a study could have occurred by ”.t
chance alone may well be the chief contribution that usage of ANDYA has ;i; a
bestowed upon us. Cochran and Cox (19537) may have best stated why %f~ ;
significance testing is important when they said, "A useful property of u E;&LZ
test of significance is that it exerts a sobering influence on the type of
experinenter nho jumps to conclusions on scanty date, and who wight "tf"."'
othherwise try to maeke everyone excited about some sensational treatsent
effect that can wnell be ascribed to ordinary variation In his experisent."
But, while the use of tests of significance 15 required by ANOVA, they are
not the exclusive domain of that technigue. Tests of significance are .‘\'.
available and employed by virtually all statistical methods. Even if :kt%ﬁ
ANOVA had never been invented or were, now, to be totally abandoned, t}tk;
researchers would still have tests of significance available to them. tfhtf
Q%—A
Others properly criticized ANDVA for not providing results in a E: o
form which more directly showed the extert of relationship between the :? I
various main effects or their interactions and the criterion variable. W z

The familiar ANOVA source table emphasized and made readily apparent which
main effects and interactions probably occurred by chance alone and which
probably did not. The ANOVA table, however, as originally presented, did
not offer a clear indication of what percent of the criterion variance was
being accounted for by each main effect and interaction. Thus, the ANOVA
table emphasized which, 1f any, conclusions could be drawn about the
various effects, but did not directly shocw the extent of practical
importance of those effects. In the past twenty years, progressively more
ANOVA applications are actually being accomplished by computerized
multiple regression/correlation techniques. Depending on the particular
computer program used, the various "sums of sguares" terms may now add up
to one with the value of each indicating the proportion of total variance

being accounted for by that particular effect. Tests of significance

CEIR R LR |
feTe ST LR S
QRN

d ‘-'_\. [

- «

a
o



b
%

::i: provided by such programs will be i1dentical toc those which weould have been
f;ﬁ obtained 1f traditional ANOVA computations had been carried out.
o
-

8.5 THE CENTRALLTY OF THE PEARSON EQUATION

;:: Realizati1on that ANDVA 1s, 1n reality, merely a speciral case ot
;;Ei multiple regression/correiation apparently eluded most psychologists for

! “? many years. Indeed, virtually ail the i1mportant data analysis techniques
éi& tan be shown to have their basis, 1n one way or anotnher, 1n the Pearson
,;:; product-moment correlation coefficient. This 1= no mere coincidence,
Zj:% however: 1t stems from the fact that the Pearson equation always finds a
;;:3 solution for one set of numbers to predict another set of numbers. The
5%"‘ solution obtained always minimizes the sum of squared errors, regarcless
33; of the kind of numbers being used {(e.g., ratio, interval, ranks,
}5&% dichotomies, etc.). Wherry, Sr. (1984) provides a discussion of the
h:# Pearson equation for many types of data. Correlation coefficients, when
g;g squared, 1ndicate the percent of variance that can be accounted for by
2ﬁ¥ using one variable to predict another. Multiple correlation is simply the
kg&: use of more than one variable to predict a single other variable. Thus,
; : multiple correlation can always be used to determine the amount of

;f' variance of a criterion variable which can be accounted for by various
§n$5 predictors., ANOVA certainly differs from multiple correlation 1n that it
:%E: requires its main effect and interaction variables {(i.,e., 1t predicts]
; - to be statistically i1ndependent from one another by the experimental

designs it requires to be used.

0 o Y
296 C

:ﬁ%ﬁ It 15 vital for researchers to fully appreciate that the method
5532 of data analysis {regardless of the actual steps one goes through) in

;a:i ANOVA obtains i1dentical results to that of multiple correlation; both

5;‘: determine what portions of tne criterion variance can be attributed to the
%% i various experimental (or predictor) variables. Thus, ANDVA does not

g Cn provide a different way of analyzing data! Further, the significance

tests used by the two technigues can also be shown to be identical. It 1s
true, however, that multiple correlation (or multiple regression which 15
equivalent) 1s far more general than ANOVA even though both technigues use

predictor variables to "explain®" a criterion variable. ANDOVA refers to

the predictor set as the "experimental" or "independent" variables or
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?S: “tactors,” and refers to the criterion as the "dependent" variable. ;1
?;: Multiple correlation 1s more general 1n that 1t does not i1nsist that the z:.
glz var1ables 1n the predictnr set be i1ndependent ot one another, but 1t can 'ifu‘
!;: be uced when that 1= the case. %?.?
o 1
{;f It 1s alcso worth pointing out that multiple correlation has a Eu
hﬁ; more tnan a fifty-year history of recognizing that each predictor variable ﬂn
ds. may contain some error of measurement and that the weights derived for —
;i} thiose predictors by multiple correlaticn 1s fitting not only the real Eﬂfﬁ
7?{ ccvartatron between the predictore and the criterion, but 1s also fitting bt
f;ﬂ the chance error 1n that sample’'s data. Because of this, the correlation,

Q‘ 1n 2 subsequent cample, between the actual criterion scores and the jﬁ\:
s predicted criterion scores (based on prediction weights obtained for the ;ﬁ
%ﬁi first sample! typically will be somewhat lower than the multiple-R value E?
‘é' obtained in the first sample. This phenomenon 15 called "shrinkage" 1n g{
_? { the multiple correlation literature. Wherry, Sr. (1931) worked out an _i
SQS: equation for predicting this shrinkage even betore ANOVA appeared on the ii
;ﬁb scene. The shrinkage equation can be used to indicate that selecting f{and ;:;}
933 weighting) all possible predictors can result in prediction equations g;i;
; y which work less well for subsequent samples than prediction equations f‘
i‘i based on fewer predictors. For the psychologist concerned with the Eﬁ
5%? application of research to realistic problems, the issue of predicting t:
i&ﬁ results in subsequent camples 1s a practical matter which is central to ‘;ﬁ}
=t the i1ssue of being able to generalize one’'s results. These types of fh',
igai problems and their sclutions have been almost totally neglected by users il
it%f of ANOVA. Such concerns must, however, be brought into sharp focus when g :
.rﬂh one desires to make inferences about the variance of the population of i‘? ]
= effects that can be expected in the real world. A§“
\%ﬁ 2.6 THE ROLE OF EXPERIMENTATION IN RESEARCH j;}:
?’; When one desires to investigate human behavior, two traditional ﬁ:;
e approaches immediately come to mind: field studies and laboratory studies. ;;_,:
?tfz Both have their advantages and disadvantages., In field studies, the i v
}:; researchers typically observe people performing real tasks under real ﬁ

;g conditions. Evente upon which data are collected in field studies will, :;‘ /
W%t therefore, represent samples from the real subject populations and task 2“ L
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and environmenta! domains of 1nterest to the researcher. However, 1t
might take added time, effort, and expense to travel to the field sites.
Cooperatiron from pecople performing the tasks of i1nterest mav not alwavs be
easy to obtain. It may be difficult to record performance data without
undulvy 1nterfering with the actual pnenomena of i1nterest. Finally, 1t may
be smpossible to determine what events will actually occur during the
period cnosen for the study. Concsequently, events which do occur during a
grven field study may not be those which were of the most i1nterest to the
1nvestigator, and sti1ll worse, they may be unrepresentative of the entire
domains of tasks, environments, and people of 1nterest to which the

researcher would li1ke to generalize the results ot the study.

Laboratory studies, on the othe- hand, offer the opportunity to
control many, tf not most, of the events which occur during the period of
study. But these various events to be studied must be created and/or
controlied. This, too, may be costly and time consuming. And, 1n a
laboratory, 1t may be very difficult or even impossible to create certain
si1tuations which are sufficiently realistic to be perceived by the
subjects like those 1n the real world. Nevertheless, the major advantages
of laboratory studies reside 1n the ability to exercise control over the
events which do occur. Woodworth and Schlosberg (1938,1954) discussed
three major advantages to being able to collect data under controlled

conditions. These advantayes are paraphrased below.

1. By controlling when events of interest occur, the
experimenter can be fully prepared to observe and/or record the behavior

being studied,

2, Because the experiment is controlled, the sequence of events
which occurred can be known and can be repeated, if desired, by either the

experimenter or others to validate the results obtained.

3. Because the experiment is controlled, experimental
conditions can be systematically varied to determine concomitant variation

in the criterion.
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?, It 15 obvious that field studies will not have these benefits f;ﬁrt

& ALY
2 ; because, 1n such studies, the researcher 15 constrained to collecting data }&j&:
£ NN
A ? on the events which happen to occur. However, 1t 1s worth noting that ;23 ;
- S
rf’ each of these benefits of controlied experimentation can still be realized Loe
!‘: without 1nsisting, li1ke ANOVA does, that experimental variables be made
J b statistically 1ndependent of one ancther. That 15 to sav. ANDVA requires iuiu.
!’ nt .’- '."\:'
] controliled experimentation, but controlled experimentation does not ,"J“g

s‘i require ANOVA. This i1s a crucial point which 15 not 1mmediately obvious é?i',
j . ¥ M
ﬁ}& to all researchers because many ot them have closely associated controlled ;5:¢
B l“‘i."‘ i
;i] experimentation and the analysis of variance for such a long time. t:} q
;‘ .f \
ﬁx’ Frr too much confusion has been created 1o some textbooks on ng
‘ﬂ T ‘
iﬁ experimental design by various authors who shall remain nameless here. RS,
O TV M
S R
‘gz fFor example, some authors misdefine "independent variables" as "those el
id AL
;“: which are controlled by the experimenter”. By such a definition, all 5*3{~
P T
?1 variables which are controlled by an experimenter must alsc be made il
L . ! lJ" J“-
{kﬁ independent of each other. This, 1n essence, regquires that all ':{{'
}:4 experiments be of the ANOVA tvpe. Instead, "controiled variables” should :ffo
3 "’.v l,‘l._--
7&~ﬂ be defined as "those variables whose levels, during events 1n the F{{ﬁ
o experiment, are specifically determined by the experimental design .
W i
vif process." Experimental variables. thus, can be either 1ndependent of or {‘.%
L0~ N
’ﬁu* related to each other and still be controlled. The ANDVA experimental %fﬁa
?ﬁq design process does require, of course, that all contrelled variables be \‘.‘

o Oy
&) independent; the RSDV experimental design process, on the other hand, does S -
P ‘ N
':ﬁ{ not! Still other authors have gone so far as to make a grossly erroneous ;fcm.
‘ '-\' >'.:"‘\‘:‘v
%tﬁ distinction between experimental data and correlational data, as 1f doing h;}:?
BC\ 5y
MW an experiment somehow precluded the obtaining of correlations or as 1if u“zh
Ve Sold
ke correlational data could naot have been obtained from a truly scientific B g
W ‘-.:_»_
);%: study. It 1s difficult to understand how the authors, themselves, can be ;f_}
::ﬁ: so misquided, but 1t 1s even worse that their mistaken 1deas appear 1n titi-

] Wk M
l .I" . “w \'.
ﬂ;ﬁ{ textbooks on experimental design and are being taught to unsuspecting ;}ﬁfﬂ

S students.
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3. DECISIONS EFFECTING HUMAN PERFORMANCE STUDIES

When an 1nvestigator sets out to study various aspects of human
performance, many decisions must be made. Making these decisions 15 not,
tn and of 1tself, a difficult task, but the decisions made can greatly
1nfluence the conclusions which are, can be, and/or should be drawn.
Understanding the 1mplications of one’'s decisions 1s, thus, of great
importance. The decisions to be made fall 1nto three general areas which

shal! be :1denti1fi1ed as:

{. elements of the situation to be studied,

2. measures of performance to be collected, and

o

3. methods of data analysiz to be used.

The following sections give a brief introduction to the decisions which

must be made i1n these three areas.

B ! ELEMENTS OF THE SITUATION TO BE STUDIED

The most obvious decisions which must be made befure a study of
human performance can be undertaken concern deciding what situations will
be studied. We have previously discussed some of the advantages and
disadvantages of both field and laboratory studies. 1f one chooses to
conduct field studies, then one 1s forced i1nto studying the situations
wnich happen to occur out i1n the fi1eld. 1In a laboratory, however, since
all the situwations must be created, 1nvestigators must decide specific
elements of the situation that wil} be made to occur together so they mav

be studied.
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Four major elements of situations are here i1dentified. They are

the specific:

a. humans on whom data are to be collected,
b. tasks with which the humans will be confronted,

environments under which the humans will be performing, and

m

d. times and sequences 1n which the humans perform the tasks 1n

the environments.

The first three elements represent what shall be referred to as L'
trhe domains of populations to be sampled by the i1nvestigator. The first fod

three te.g.. humans, tacks, and environments) represent the generic F

domains found i1n all human performance studies. It must be obvious that §t~
Y
no studvy can 1nvestigate al!l humans, all tasks, or all environments, so a F?X
§
given cstudy must alwayc be restricted to specific human, tacsk, and ‘4&‘
AT

environment domains. It seems fairly obvious that the researcher should

be the one to specifyvy which domains are the subject of a given study. The gt f'

fourth element represents the i1ntercections of the three specific domaine §Q{$

during the various situations actually studied. Again, since 1t would be "gﬁt
" unlikely that all possible situations from the specified domains could be ﬂ:‘.
;ﬁﬁ; studied 1n a single experiment (unless the human, task, and environment Ekti
htg: domains are extremely restricted ones), the i1nvestigator must settle for :I:?'
:%: some sample of the possible intersections., Thus, all experimental design :;,r

C#

decisions are actually concerned with either domain specification

5

3'"; decisions or domain sampling decicions.
i i
52&; B 1l Definition of a "Domain"
. A domain (or population) 12 a statistical concept which is,

(ﬁ perhaps, best simply defined as 1ncluding "all the possible instances of

{ ; humans, tasks, or environments which are, were, or will be of interest to ::_.::‘\
}};2 the researcher for a given study.” The definitions of each domain can be b
I;- as broad or as narrow as the particular investigator wishes to make them. 1
;Iﬁj There 1s, however, an 1mpact which must be realized when the investigator :;f‘
ng: celecte and specifies the domains to be studied. The i1mpact 1s that, as ik
';,- an honest and objective scientist, the researcher is only permitted to

;, draw inferences and conclusions about the domains which are being studied. X
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fﬁ% 8 - 2 :ééi
L }Z'a
., X, 3
o R

AN

P o 1Y, R T e B AR T
LU AN T ey ;“" "o uv"'i" I’ ‘" "_"-t' W
) 3 ! N ko ."1 ‘f‘ ’," 3“‘» » i‘\y h" ( \f

A A RIUMGR AT WO AT O N LI




HRARS

Ve
e
b

‘.“.“A

AR -l Eag
- 2T
= B &
a_ 1

SUiat ]
X A A A A_AL

,‘f

¥

.'.‘f

a0
n i

...
i
P

|
AR

e

- LS + T
N N

|
o

[ et e 4

£ wno G s e

~1@

g
)

-
L

PR
R T
P NP

Y et {

<> Y s XX A 1
d ',;'; < _L,L
2l

o
o

E?v

TN X
=

3

i
5.
oy

r
S AT e

D

o)
3

Further, even this 1s permitted only when the samples drawn from the

domains meet certain criter:a.

It 1sn t that researchers cannot 1nteiligently speculate about
the probable sim:larities of their findings for domains other than those
studied. Most of them are certainly capable of this. It 1< merely that
any such claims they mighc¢ make, at that point 1i1n time, are simply
untested hypotheses, and, as scientists, they should never confuse the
reader by mixi1ng legitimate inferences that can be drawn from their darta
with untested hypotheses they think might be true. One mav svapathize
with the obvious desire many researchers have to general:ize their findings
and conclusions beyond what 1s actually warranted by their studies. They
should remember, however, that use of appropriate procedures and
statistics have already permitted them to make 1nferences about the
domains actually studied based solely on the limited samples of data they
have collected; conclusions about domains not studied are simply not
justified, Still, 1t 1s doubtful that researchers can ever be convinced
not to share with readers the benefits of insights gained during thear
studies. Nor should such behavior be discouraged too strongly. Insights
and speculations may sometimes turn out to be valuable both to other
researtchers and to practitioners in the field. Unfortunately, much of
what 1s often placed in the "findings and conclusions" sections go well
beyond legitimate 1nferences, and, if included in research reports, should

clearly be labeled as speculations.

J.1.2 Problems with ANOVA Stud:ies

Earlier, 1t was indicated that all human performance studies must
be studying a sample of some particular domains of people, tasks and
environments. It should alsc be noted, however, that the particular
domains studied by an experimenter may not necessarily have a sufficiently
close correspondence to any actual domains of interest in the real world.
In part, this has been why results from ANOVA studies have been unable to
generalize to many real world situations. Regardless, having decided what
domains will be studied, the researcher must next decide how those domains
will be sampled. With complex womains, i1t will usually be 1mpossible to

study all pessible combinations of all possible levels of all the
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variables of all the domains. ANOVA properly reccgnizes the distinction
between arbitrarily "fixing" the levels and "randomly" choosing them. The
impact thecse decisions have on the type of inferences that can be
legirtimately drawn 1n thoce caces was previously discussed, but they bear
repeating here. If the levels are arbitrarily selected, then no
inferences are permitted about the domain in general. This 1s not simply
a nice convention to follow; the tests of significance accomplished when
the levels of variables have been arbitrarily selected do not reveal
anything trustworthy about how much performance variance that variable may
eftfect 1n the real world. This, then, 15 alsoc a major reason that most

"fixed" or "mixed" effects ANDVA design results from laboratory studies

fail to generalize to the real world; they were not properly desigred to

fQ reveal the practical i1mportance of the experimental variables to the human Dl
performance measured. That so many studies over so many years turned out f}
to be of little help 1n selving the problems of the real world should not ;%

surprise anyone. What 1s surpr:sing 1s that so many researchers continue

to behave as 1f the relative importance of variables, as found 1n their

Zﬁ ctudies, wi1ll generalize to real world situations, when, i1n fact, there 1s
i&l no statistical evidence supporting that position. While it 1s true that

; researchercs have been able to properly conclude that different levels of
ﬁj certain experimental var:iables probably do have a real effect on certain
;j human pertormance criteria, the extent of effects found in laboratories
3f) may not he i1ndicative of the exztent of the effect in situations of

i_ interest 1n the real world.

f

?} Finally, 1t was previously pointed out that ANOVA unduly

44 restricts both the number of experimental variables that can be

investigated and the number of levels in each variable. For all practical
purposes, it 15 impossible to effect:vely vary all the parameters which

are needed to describe complex, domains of 1nterest in the real world by

. using ANOVA. This tvpe of restriction has forced the users of ANOYA to
,.,\ decide to i1nvestigate situations which are unlike those occurring i1n the prowlvl
%l real world of interest.
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3:b 3.1.3 Further Difficulties With Field Studies
;*% The field researcher does not have to make many of the decisions
ﬁ.t mentioned above. The people, tasks, and environments found in the field
ff; situations are obviously ones from the domains of interest. There is, in
;ﬁ; fact, much to commend researchers to go into the field and collect data
;iﬁ there. But there are also several serious drawbacks, many of which have
;ﬁ: already been mentioned. In addition to those already mentioned, some
BT' others can be added.
i
»ikx First, when the study is completed, the researcher may not know
f%? 1f the particular sample of people, tasks, and environments were truly
_}5 representative of the domains of interest. This is not a question about
’:%1 whetrer the events and behaviors observed were sampled from appropriate
:;&3 domains, but to what extent the obtained sample 1s representative of the
?jﬁ: distribution of situations for the people-task-environment domains as a
'é%i whole. Assurance 1s needed that the tasks, which happened to occur while
ﬁay data were being collected, were neither too easy or too difficult. A
’?ﬁ: field researcher needs to determine if the tasks, for example, are a
E;ii representative cross section of the tasks which humans are required to do,
- not only at the field sitef{s), but at any other field sites of egquivalent
;-3 interest. Convincing evidence is also needed to demonstrate that the
j;ﬁﬂ distribution of the levels of intelligence of the people on whom the data
bﬁfg were collected is also a representative cross section of the persons’
\—)\ intellectual capacity found in the entire people-demain of interest.
;??? Similar reassurance is needed with respect to levels of experience and
jiiz training and motivation. There are many such issues which should be
;%3: resolved before the field researcher should claim that results obtained in
'iﬁq a particular field study typify the results that would have been obtained
af:{ if the entire domains of interest had been exhaustively studied. The
,{:% major concern, then, 1s whether samples of data collected in the field
f;ﬁ& si1tuations are representative of the domains of interest, or whether they
:: are, is, in fact, biased samples of data. Thus, the field researcher,
;;ES like the user of ANOVA designs, may alsoc have ;-oblems with generalizing
AL results.
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Tne Need ftor "Domain Specifications"
The prior discussions suggest a central, but often neglected,
responsibility for both laboratory and field researchers; the development i- '3
of epeci:fications for the domains under i1nvestigation. Hoth types of Eﬂ“:
researchner should embark on what can be called domain specification 2
efforts, the purpose of which 15 to establich the relative frequencies g;}'
with which various s:ituations t1.e., combinations of types of people, E$£§§
tacke, and environments) occur i1n the entire, complex, real world of > .
interest., Both types of researchers need domain specifications to hzﬂi
explain, more precicely, to others what domains supposedly were ok E
tnvestigated. The laboratory researcher should alen have domain ;
cpecitications prior to deciding how the domains of i1nterest shall be B,
campted. The only way the field recsearcher can begin to determine 1 §{T:
field data collected are representative of the "real" domains of i1nterest :jﬁ?i
would be to compare the actual sampled distributions of people, tasks, and :;%E:
environments with specifications of the distributions of people, tasks, -
and environments which define the domains of i1nterest.
Conce1vably, with such domain specitications 1n hand, field A%
| researchers could at least make estimates of the similarities between the e
?éi sampled distributions and the specified distributions for those domains, f:%::
fi: l1f the means, variancecs, and 1nterrelationships among the maj)or variables iﬂ&ﬁf
jﬁf{ are not significantly difterent from those same parameters for the Ei%ﬁﬁ
S.) cpecified domains, then the researcher would be justified :n making
gi& generalized 1nferences to those domains. In other words, it is possible :?Hﬁ?
4 to develop statistical tests to determine if the situations occurring in a :{S‘}:
l_‘; given field study differed significantly from those in the specified t\{:
_' domaine. m :
30 S
(i; It should even be possible to develop procedures for weighting R
[ - sampled data so that the overall results obtained from a particular field 23%:'
o sample would be more representative of the specified domains of interest. e
%i; The approach might have similarity to the eqguation for correction for E:E:
1»:% curtailment of range. The concept of weighting data 1s somewhat foreign kﬁ::
%:& to many i1nvestigators. However, 1t should be remembered that “"unweighted” ﬁgﬁz
- data have all been assigned equal weights, and this, touo, is an arbitrary
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decision. Thus, there 1s really no escape from assigning weights; the

only question 1s what are the most appropriate weights.

A 1015 Inability to Resolve Unexpected Data Cases

A probiem alluded to eariler concerns finding strange and
unexpected performance values 1n data collected during a fieid study. The
researcher often cannot tell 1t there 1s a problem with data recording
devices or whether the data actually represent real behavior. FEecause, 1n
tf1eld situations, 1t 15 usuvally difficult to monmitor and record everything
that 1s occurring, the researcher may not have recorded all the states of
all the variablecs that could be effecting performance. BHecause ot this,
the researcher may not have a geod 1dea of how to go about trying to
replicate a particular situation to see 1f the same behavior will reoccur.
Even 1f the field researcher returns i1mmediately to the same site and
obtains the same people to study, the same events may not occur and the
recearcher will be unable to resolve the issue. It 1s this lack of
repeatability that is sometimes frustrating to those who venture into the
fi1eld. Of course, similar experiences can al'so happen in the laboratory,
but the degree of ambiguity is rarely as great i1n laboratory studies as 1n

most ti1eld studies.

[
o8]

MEASURES OF PERFORMANCE 70 HE COLLECTED

The second major decision area for an investigator concerns what
measures of human performance are to be recorded. Traditional measures of
performance include such parameters as speed and accuracy. [f speed of
performance 1s to bhe measured, the researcher must decide how to measure
task duration and/or if times will also be recorded as vartous portions af
the task are completed. A related problem is that 1t may not always be
obvious when the task or a subtask has been completed. There 1s alsn the
problem of what time to record if the task i1s not completed properly.
Similar 1ssues can also be raised for measures of accuracy cf performance.
Often, there may be difficulties in operationally defining what
constitutes accuracy or being accurate, and there may be no eguipment to
objectively and directly measure it. The use of the experimenter ar an
outside "expert" to make these evaluations is fraupht with problems.

Making the human subject responsible for informing the researcher that he
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has succescfully completed the tack may introduce vet new sources of
variance that have little to do with actual performance. There 1s also
the problem of whether partial credit should be given :1f the task 1s
performed almost correctly. The temptation to dwell on these 1ssues or to
comment on various other types of measures which may or may not be closely
related to task performance (e.g., physiological measures, subjective
estimates of "workload," etc.) will be resisted. It 1s sufficient, for
our purposes here, to point out that decisions regarding which performance
data will be collected may, ultimately, lead te differing results, and,

therefore, to different conclusions,

3.3 METHODS CF DATA ANALYSIS

The actual methods and procedures selected for the analysis of
the data collected during a study can also impact conclusions drawn by an
investigator. These data analysis methods and procedures include those
for summarizing data, making inferences, and testing of hypotheses. It is
helpful to discuss the more familiar methods and procedurcs in terms of
their applicability to summarizing information about a single variable,
two variables, or more than two variables at a time (i,e., univariate,
bivariate, or multivariate methods and procedures). 5Statistics derived
for these purposes typically provide single numerical values which
describe, in a fairly unambigquous fashion, some important characteristics

of the data which have been collected.

IR Univariate Measurec and Methods

Univariate statistics help in describing the shape of the
distribution of scores for a single variable. They can be computed and
reported in lieu of publishing the raw data or providing a histogram
showing tre freguency of various scores. A single raw scaore (e.g., a
person’'s trme to perform a particular task under some specified
tondition: would be fairly meaningless without some i1ndication of how
long 1t took other subjects to perform that same task under similar
conditions. The mean, standard deviation, and the measures of skewness
and kurtosis are four measures that provide highly meaningful, but

difrerent, summary 1nformation about the distribution of any set of scores
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R representing the obtained states of any experimental or craiterion
-
Ei{- variable.
o
T
r‘ While the median and mode also provide interesting i1nformation
AT

2

about, say, how others did on a task, the mean has certain properties

&ﬁ: which make 1t particularly useful. For example, the mean minimizes both g
“f#' ‘w‘ ’:‘_-
;; the sum of errors and the sum of the squared errors 1f we desire a single e
\3 numerical value to "predict" what each score in the sample was. That 1s, e,
1

e ~ N
;ﬁ;? X = ‘E’X‘ / N, and (3-1)
-t;*\“'!

N -

53 E (X, - X)/N = 0, and (3-2)

w {=g
o
{uf- & vy 2 .
L L (X, - X)%2 /N = ninimum, (3-3)
B =is
Y
ﬁ:ﬁ The mean is also useful because, 1f the sample aof scores 15 a random one,
‘” ‘1?
a;:j then the obtained mean for the sample 1s alsoc the "expected value" of the
139
:iﬁj population from which that sample was drawn. What 1s meant by the
b 4 . . .
,;1< expected value is that if we continued to draw samples of size N from the

same population, the average of all the obtained sample means would equal
the actual mean of the population. Thus, by computing the mean of a

random sample of scores, we obtain an "unbiaced" estimate of the mean of

the population. This property of the mean all ws us to draw inferences

about the population mean, even though we have only looked at, perhaps, a e
n X
. . e LY
relatively small number of cases from that population of scores. kX&”f
I ”- '
Lﬁ:n_}'}
'-.(,3 ‘_.-
The variance of a set of scores is computed by the equation fﬁ}e
= > |
N = X %)
Ly ¢2 = L (X, - X2 /N . (3-4) S
!. -}.h i=1 f i
5. e :
i ;
g : : ;
,_xﬂ‘ The variance provides a single measure of how the sample cf scores vary
A
around the mean of the sample. The sgquare root of the variance 15 known g
as the standard deviation. The variance (and the standard deviation) also :{: ;
have very interesting properties when the sample of scorec were randomly N _{
drawn froem the population. 1#, for example, we were to continue to draw '135'
IS
random samples of size N from that same population, we would eventually AN
T A3
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. R0
3 . 8
Y S
\ w*-‘h%rj-w“sz“ﬁﬂ““*f% ﬁ”ﬂ‘\ﬁ”tﬁﬁ”'vv Jﬂ“-wﬁ_w'ﬂfjﬁ, ERAAC AN At AP Ay
‘..1'5..)& g ?’\‘ 5‘ T.‘w--. o o > ."\'r‘uﬂn.."ﬂ:# .{,‘v‘}i- ) .:‘\4’».% u'_‘ i"f)r.ﬁr,.': r.".' .'\-J.‘{ . ** o 'q\- -__4' .'\‘..'.,‘n';.“,} T+
"n S ',- \"- '.. -L. - Y W = 2 ) ,\ - -v" K
?‘QA\\ ‘{\J' '\r '} Wil e W -('@_} _r;(' e ,\” RN \'-‘ -{".‘" \_‘ :75} 1 K

L.
B 3 e
‘lﬁ RO \"l\q.!!-ﬂ‘- «l"*lﬂ- H-!u .en;’n p&b L NN o.ad {3 HM x



: X3

SR

3

find that the average of vartances cof the samples was slightly less that

the varrance ot the population. In ftact, we would find that

Mean Sample Variance = Population Variance (N-1)/N . {3-5)

Thus, arn unbiased estimate of the variance of the population can be
cotained simply by multiplying the sample vartance by N/(N-1). This 1s
true, regardless of the shape of the distribution of scores in the
population. It can also be shown that the vartiance o' the means ot the
samples will be equal to the population variance divided by N. Eguations
t3-4) and (3-53) are part of the basic for tecting whether two or more
random samples probably came from the came population, and are, thus, part
of the basic for ANODVA. What 15 particularly 1mportant, however, 15 that
Eqs. (3-4} and {3-3) are based solelv on random sampling and not on the
shapes of the distraibution of scores 1n the population from which the
random samples are drawn. The assumptions i1n ANOVA (and many other
procedurec requiring statistical tests) which concern normal-shaped {the
co-called bell-shaped) distributions are there in order to justify using
the F-table values i{which are baced on random sampling from normal
distributions) to determine how often certain results would have happened
by chance alone. FEut, egquations (3-4) and (3-9) still allow researchers
to draw 1nferences about the variance of the population and the variance
ot the means of samples from that population, regardless of the shape of
the distributions from which a data sample wac drawn, provided the sample

was drawn randomly'

Measurec of skewness and kurtosis are {found, respectively, by
obtaining the ratio of the average of (X, - i) raised to the third
and fourth power and the standard deviation rarsed to a sim:lar power.
The skewness measure provides 1nformation about the sample of scores 1in
terms of whether the sample dicstribution tende to be symmetric around the
mean while the measure of kurtosis provides information about the flatness
or peakedness of the distribution of a sample’'s scores. Of particular
tnterest, here, 15 that all symmetric distributions will have a skewness
value of zero. A negative skewness value would i1ndicate a longer "tail"

of lower-valued scores while a positive skewness value would i1ndicate the




R e

R
opposite. MWith regard to the measure of kurtosis, a normal distribution N
will have an expected value of 3, while a rectangular distribution {1.e., -j:f
one where there is equal probability of randomly drawing a score along the ;i:z
4
entire oistributicn of possible scores) will have an expected kurtosis i@
FaNs value of 1.8. .1$'
N A
e e
S e
?yﬁ' While measures of skewness and kurtosis are less freguently ]
i o
{ ¥, reported on sample data, they do provide very useful 1nformation about the =
-u:: A N ;
g shapes of the distribution of the sample scores. .%
ol
’ . kG
g SL.8L.2 Bivariate Measures and Methods :&,g
by et ¥ -~
4 Bivariate procedures and statistics provide 1nformation which y
ﬁggﬁ allows the researcher to reveal some properties about two different H{n
xflg variatles, or more precisely, two different sets of scores which ‘Htf
SR .(:.J“ t
1it}ﬂ supposedly measure different properties of the elements :1n the sets. The o)
ey 3
;ﬁh Pearson correlation coefficient (r), which can be correctly i1nterpreted 1n Do
f{;_: many different ways, 15 computed by the equation g
o N Sy
[ P« x ® Lz, 2, /N (3-6) oS!
N\ Sk 1 2 te=1 & L ..!.
2\
BEY 3
A where y f
e (X, = X,/ =
TR z O - v 14
.i}C: "y f ' s {\ll
¢ ":L.P; :;.\
@ 5 z, = (X, = X,)/¢, , and A
’ LAY 1 1 2 Sy
"f',‘l'".hl ".’:‘ ]
",‘h;_‘-' ‘:. '
N N = the number of cases in the saample. Y
'5'“ ] One interpretation of r is that it gives the slope of the prediction line £l
J}?}: that minimizes the sum of the squared errors when both variables’' sets of -f'
e Hud
»,ﬂ:x- numbers have been converted to standard scores. That is, the "best” :1}
'y Y .'
qﬁﬂi' linear prediction of either set of standard scores wil. be found by :3“
"‘:“.".-#: A |
e multiplying the other set's standard scores by r. 1It, wuerefore, gives a =
LPre
A summary of how two variables’ scores vary together. The square of 1ts )
"j§*y value also yields the proportion of variance of either of those variables :f:
B _"{1" -l.: “"qk.‘
ﬁhiﬁ, that can be accounted for by using the other’'s set of numbers to predict Y
LIRS N
A # it. 1f the sample of N cases was obtained by random sampling, then the i
1
o
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obtained value for r 15 also an unbiased estimate of the population’s

correlation for those two variables. Again, 1t needs to be emphasi:zed
that this conclusion 1s not dependent on any assumptions about the shape

of the population distributions, but simply a property of random sampling.

With regard to the correlation between two variables, tests of
signiticance can be performed to give an i1ndication (provided the
assumptions of the tests are adequately met) of whether the correlat:ion
differs significantly from some particular value (e.g., zero or some other
value) by an amount greater than might be expected by chance alone. Thus,
the simple correlation coefficient can be used to test the null hypothes:is
that some variable (which describes some feature of one of the domains of
interest) had no effect on a variable which is some measure of human
performance. While the various tests of significance for a correlation
coefficient typically do assume some particular shaped population
distribution f{(e.g., normal, binomial, or rectangular), it can be shown
that these tests tend to converge toward the tabled values (F-table) for

normal distributions when N approaches 30 or more cases.

A rather large number of methods have been developed for
comparing two data samples to decide whether they probably d:d, or did
not, come from the same population. Examples of these methods i1nclude
various standard t-tests, Mann-Whitney U-test, White R-test, Festinger d-
test, etc. In reality, these methods are simply special variations of
determining 1f two sets ot numbors (where scores 1n one of the sets are
measuring some vartiable and scores in the other set are either "one" or
":ero" to i1ndicate 1f they came from sample one or not) can be said to be
cignificantly related. Thus, thecze methods actually fall 1nto the

category of correlational methods.

.33 Multivariate Methods: Multiple Correlation

Multiple correlation f{perhaps the most widely ucsed cf the
multivariate procedures) represents a sequence of tests of the null
hypothesis that beqine by assuming the null hypothes:is with regard to all

the potential predicrtors i1.e., the variables which describe features of

the domains of interest). The predictor variable having the largest
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correlation with the criterion (i.e., the measure of performance) is then
tested to see if the null hypothesis can be rejected. If so, then its
effect on the criterion 1s said to be "real” and that predictor’'s effect
on the criterion and all other remaining predictors is removed (i.e.,
“partialed" out). The above procedure 1s repeated for all the remaining
potential predgictcrs until the largest remaining residual correlation
between the criterion and any of the remaining predictors 1s no longer
sufficiently large to reject the null hypothesis by the particular test of
significance employed. This approach to multiple correlation 1s called
the "accrual" method (because it keeps adding predictors one at a time).
Wherry, Sr. (1940) developed the first of the accrual methods for multiple
correlation using his “shrinkage" egquation to determine when to stop
selecting predictors so as not to overfit the errors of measurement in the

particular sample of data that had been collected,

Another approach to multiple correlation is called the "d=letion”
method. It starts by selecting all available predictors and then deletes
the most nonsignificant one by the particular test of significance being
employed. This procedure 1s repeated until none of the remaining
predictors are able to be rejected as being nonsignificant. The
"accrual” method and the "deletion" methods can sometimes arrive at a
slightly dirferent set of "significant" predictors, but, usually, they

obtain 1dentical results when both use the same test of what is deemed to

be significant. The accrual method requires far fewer calculations,

however. Either method will also usually obtain a slightly different
splution (i.,e., fewer or more selected predictors) depending on a level
(e.q., .05, .01, etc.) arbitrarily selected by the rasearcher. Since all
research results might have occurred by chance alone, some level of
probability must be chosen to define a point beyond which the researcher
1s willing to i1dentify the results as probably not being merely the result

of chance.

The third approach to multiple correlation 15 to simply use all
the available predictors, but this, because of the shrinkage problem, will
typically lead to less satisfactory solutions since the weights obtained

tor the predicter variables will not work as well 1n a cross-validation
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sample. Finpally, i1t should be pointed out that the sequence in which
variables are selected will make no difference in either the final value
of the multiple correlation (R) or in the weights assigned to each
variable selected as a predictor. What i1s important is the set of

predictors selected; not their sequence.

While multiple correlation is always finding the "best" linear
fit between selected predictor variables and a criterion, the researcher
is permitted to define other variables which are nenlinear functions of a
predictor variable or the products of various predictor variables.

Further, nonlinear transformations can be 2ccomplished for any criterion

variable prior to the accomplishment of the multiple correlation
procedure. Thus, multiple correlation can also be used to identify
significant nonlinear and interaction effects as well as linear ones.
When such variables are used, it is traditional practice to select all
possible significant linear variables before attempting to select the
nonlinear or interaction predictor variables. Stone and Hollenbeck (19B84)
have recentiy discussed issues surrounding the question of the sequence
with which predictors should be selected. Thus,; when using multiple
correlation to accomplish ANOVA applications, the main effect variables
are selected first, then interaction terms. ANQOVA, however, essentially
uses the "deletion” method discussed earlier in that it, first, selects
everything and then determines which predictors are probably not
significant ones. ANOVA may "pool" the variances of nonsignificant

effects with the error (i.e., the “"unexplained" variance) term.

While there i1s general agreement with regard to the sequence in
which main effects and interaction effects should be selected, the
sequence of selecting various linear and nonlinear terms for the main
effects themselves represents another potential point of disagreement
among researchers. If a main effect has k levels, then ANDVA (using
wultiple correlation to accomplish the analysis) requires k-1 predictor
variables to represent the total main effect variance. The reason this is
true 15 the same reason that the main effect has k-1 degrees of freedonm,.
Traditional ANOVA will select all of these k-1 predictor variables, first,

for the major analysis, and only, subsequently, may determine by "tests of
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contrasts" whether there are significant differences among those k-1i
variables. In this approach, the k-1 variables are dichotomous variables
(zero or one scores) i1ndicating that the data case belonged or did not
belong to that level of that main effect. ARlternative procedures in ANDVA
tor main effects 1n which the particular levels can be ascigned numerical
values, utilize k-1 orthogonal polynomials to determine the probable
significance of linear, quadratic, cubic, and higher-order terms. As 1n
traditional multiple correlation, 1t would seem more appropriate to,
first, determine the significance of all lipear terms of all main effects
prior to determining if any quadratic or higher-order polynomials are

si1gnificant or not.

3.3.4 Multivariate Procedures: Factor Analysis

Factor analysis is another widely used multivariate procedure
which has many variations. Its primary function 1s to determine the
number of independent dimensions {or factors) necessary to account for the
interrelationships among a set of variables. Several methods have been
developed to determine how many independent factors are needed or should
be extracted. Various schemes have been devised tc rotate the dimensions
obtained to various mathematical criteria in order to obtain a
"meaningful" set of independent factors. The most popular rotation method
among psychologists 15 the Varimax method which attempts to rotate to
mathematical criteria which will yield a pattern of factor loadings which
exhibi.s what 1s referred to as "simple structure." A recent improvement
to that method which attempts to find a pattern of loadings which exhibits
not only "simple structure” but also "positive manifold” is discussed 1in
Volume 2 of this series. Both "simple structure" and “positive manifold"
are concepts which help to determine the rotation which represents the
"real factors, A different "rotation" represents an alternative method
for accounting for exactly the same variance, but with the “"factors" being
located in somewhat different positions. The relationships of the
variables in the matrix of interrelatioships to the obtained (and/or
rotated) factors which were found are called "loadings." Because the
factor loading (f,,.) 1s, in fact, a measure of relationship between a
grven variable (§) and a given factor (k), the loading squared will

indicate the proportion of vartrance of that variable which 1s accounted
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far (or "explained") by that factor. A performance criterion variable may

?¢~ be found to load on several different i1ndependent factors. Interpretation

;3?5 of what a particular factor represents is normally based on how each of

'.V: the variables 1n the matrix actually load on that given factor.

i

; }j F the above discussions, 1t can be seen that multiple

bl rom ov : p

gé:; correlation can be used to test hypotheses regarding significant

W] relalionships between the domain descriptor variables and the human
'gki: performance (criterion) variable. It can also be used to determine how S:
j:q;: much of the criterion variance can be "explained" or "predicted" by the Qﬁ\_
?"\§ predictors. The analysis of variance {(ANDVA) can now be recognized as a Y
'A% speci1al case of multiple correlation which can be used when, and only

?ﬁﬁj when, the predictor variables have been mathematically forced to be
3{;? independent of each other {regardless of how they may be related in the

;5%? real world). Factor analysis, on the other hand, can be used ta determine

fgfé how many significant independent dimension or factors are responsible for =3
%ai the interrelationships of both domain descriptor variables and/or kt
ﬁs& performance criterion variables, and to further determine the nature of %ﬁ¥
'Qﬁﬁ the factors and the extent to which each factor accounts for the variance 4

1n performance scores.
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4. PRINCIPLES AND APPLICATIONS OF RANDOM SAMPLING

4,1 RANDOM SAMPLING DEFINED

Random sampling does not, of course, refer to “"careless" or
"haphazard" sampling. Random sampling concerns the probability each
element of a "population” has of being selected on the next draw from that
population. If all the population’s elements truly have an equal chance
of being selected, then, and only then, is the sampling said to be a
random one; any departure from egual probability for all elements in the
population is some form of "biased" sampling. The entire sample drawn may
be said to be a "random sample" provided each draw has been random. In a
random sample, therefore, each draw is i1ndependent of what elements have
previously been drawn from the population. These features (i.e., egqual
probability of being drawn and independence of each draw) permit
calculations of the "expected” values of various statistics used to

describe samples.

4.2 "RANDOMIZATION" IN EXPERIMENTS

In section 2 of thi report, R. A. Fisher's ANOVA was criticized
as being, in part, responsible for slowing psychaology from becoming a
viable scientific discipline capable of coming to grips with the complex
problems of the real world. To be sure, the adoption and widespread use
of ANOVA has made, and will continue to make, vital contributions to the
various fields of psychology. Nevertheless, its utility is guestionable
for studies of human performance in which the researcher suspects that a
large number of variables are responsible for the variation in human
performance. While ANOVA obviously falls into the class of multivariate
procedures (because i1t can be used to investigate the effects of more than

one variable at a time), researchers should recognize that ANOVA has some

very serious, practical limitations. Fisher must have realized that ANOVA,
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with 1ts demand for proportional data cells for 1ts main effects, could nat be
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veed to cystematically vary a large number of experimental variablec at the

came time. As a scientist, he recognized that during any experiment, some

...,
D
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"uncontrolled" tand, perhaps, even unknown) variables could be responsible
for come of the variation found 1n the criterion or dependent variable.
The fact that all possible variables which might effect the criterion
could not be controlled by ANOVA was probably not a major concern to
tFisher. Fisher, no doubt, wrestled with the problem of how to alleviate
the possible covarying of controlled and uncontrolled variables. And out
of that concern came one of hic most significant contributions to the

oxperimental method; the use of the device called "randomization."

Fisher was a brilliant statistician, steeped in the concepts of
random sampling. He thoroughly understood that when two truly independent
7ari1ables were randomly sampled the expected value of the covariance would
pe zero. Thus, he correctly reasoned that the best way to limit the
covariation of uncontrolled and controlled variables would be to randomly
assign persans to the various experimental conditions., Randomization, in
experimentation, 15 often thought of as a needed “"insurance" policy to
prevent the researcher s subconscious biases from intervening into his
experiments, or as a way of keeping other possible biases, which otherwise
would unduly influence the results of the experiment, from occurring. In
a loose sense, randomization serves these functions in that, by randomly
assigning people to groups, treatments, etc., it tends to reduce the
probability of certain unusual combinations ot persens, tasks, and
environments that would yield results that others, performing essentially

the same experiment, would not be able to replicate and substantiate.

The i1mportance of randomization to experimentation cannot be

overemphasized. Cochran and Cox (1957) have stated, "Randowmization is one

of the few characteristics of modern experimental design that appears to
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be really modern. One can find experiments wade 100 or 150 years ago that

enbody the principles that are now regarded as sound, wmith the conspicuous

exception of randonization.”

The concept of randomization 15 but one application of the
principle of random sampling which 15 the basic for almost all statistical
tests. The principle of random sampling also permits establishing
confidence limits, the derivation of "unbiased" estimates of various
statistical parameters, the testing of hypotheses about samples of data,
and the drawing of inferences about the populations from which samples of
data must have come. The principle of random sampling 15 absolutely vital
to statistics and, thus, to experimental design and the analysis and

interpretation of data.

4,3 STATISTICS BASED ON RANDOM SAMPLES FROM A POPULATION

While it- 15 true that many of the tests of significance are
derived by assuming random sampling from normally distributed variates, 1t
must be pointed out that the principles of random sampling apply to any
type of distribution. The various statistics which measure the mean,
standard deviation, skewness, and kurtosis can be calculated for any type
of scores and from any shaped distribution. Regardless of the shape of
the distribution of a population of scores, the mean of a random sample
from that population can be shown to provide an unbiased estimate af the
mea. of the population, Likewise, it can easily be demonstrated t-at an
unbiased estimate (or “"expected" value) of the variance of a population of
scores will be the sample’'s variance multiplied by n/(n-}), provided,
again, that the sample of n scores were drawn at random from the
population., In the same way, the correlation of randomly sampled scores
between any two variables (of whatever shaped distributions) can be shown
to be an unbiased estimate of the correlation of those variables in the
population. These properties ot various statistics based on random
sampling allow researchers to make valid i1nferences about the population

trom which only a single sample of data has been drawn.




18 4.4 THE STATISTICS OF MULTIPLE RANDOM SAMPLES s
'; One of the most i1ntriguing of all statistics deals with the ; :
3 % expected variation of the means of different samples of size n, =ach of ;j
Af7, which has been randomly drawn from the same population. It can be shown E;ggg
,;; that the expected variance of the means must be equal to the variance of ;iﬂ%
: : the population divided by the size of the samples. That is ;5’%%
& Ficana * fZorurarion/N - (4.1) o~
Y S
&Y ‘1
;E' It 1s this property of random samples which permits the testing of the f;:;

x gae <0 2
. N

significance of the difference(s) between the means of two (or more)

& samples., While it 1s true that the values found in varions tables (e.g.,

‘i;: F, t, Chi Square, and 2z) are all based on random sampling from normally

;i; distributed populatione, equatior (4.1) holds for any shaped distribution.

»

i 4,3 RANDOM SAMPLING OF ITEMS WITH MULTIPLE ATTRIBUTES

ﬁ;; When random sampling is discussed in mathematical or statistical

E%: textbook examples, the population of items to be sampled are usually

Eé; described as varying on only a single attribute. Thus, most textbook

b examples describe a population of different colored balls or some other

? ﬁ si1ngle varirate. Typically, textbook examples alsoc assume some well known

iig theoretical distribution shape such as normal, rectangular, or binomial.

;* However, we may equally well consider random sampling from a population of

;Lj 1tems that vary, not only in color, but also in size and shape as well.

ﬁ!: Indeed, we may think of each item in the theoretical population as varying

j}% simultaneously on a multitude of different attributes. Further, we may

fiﬁ: also consider that each of these attributes may possess different

i distribution shapes, none of which are perfectly normal or rectangular.

"i- If those 1tems !‘with multiple attributes) are randomly sampled, we

'sz certainly could ignore all the states of all other attributes except for a

ﬁ’%: particular attribute of interest. It should be obvious that, assuming the

i:: sample drawn 1s a truly random one, then we would be able to calculate

ssi unhi1ased estimates of that particular attribute’'s population mean, i
}:& variance, and so forth. But 1f that 1s true for the particular attribute :T
ts: we happened to be interested in, then it would also be equally true for i;l
WL all other attributes as well. Thus, the sample obtained from a true :
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random sampling of multi-attribute items of a given population or domain
will yield a random sample for each of those attributes. The fact that
some of the attributes of those items may not be independent of one
another does not detract from the above conclusion. And, the conclusion
will also be true whether the random sampling i1s accomplished with or
without replacement of each item drawn. That is to say, for the
statistics of random sampling teo hold, the attributes of items are not
required to be independent of each other, but the drawing of each
subsequent item must be independent of all previous draws. Random
sampling is totally satisfied when each item remaining in the population
has an equal chance of being selected on the next draw. 1f, for example,
attribute A and attribute B are related in the population to be sampled,
the correlation obtained from a random sample of those items should also
provide an unbiased estimate of the correlation of those attributes in the
population. Similarly, the obtained means for both attribute A and
attribute B should both be unbiased estimates of the means of those

attributes in the population.

When experimental variables are spoken of as having effects on
some performance criterion, one i1s merely stating that there are
significant relationships between those experimental variables and the
criterion variable. These relationships are assumed to be stable in the
population. Because researchers do not know the extent of those
relationships in the population {(or domains of interest), they must
collect data so as to obtain estimates of those relationships., As pointed
out earlier, the only way to ensure that the estimates obtained are
unbiased ones is to ensure that the sample of data collected is truly a
random sample of such data. This philosophy is the basis for the Randonm

Sampling of Demain Variance (RS5DV) technique.

4.6 RANDOM SAMPLING IN SIMULATION AND MODELS

Another practical application of random sampling is found in
various simulations and mathematical models. O0Often times, i1nvestigators
desire to mathematically replicate conditions found (or assumed to exist)

in the real world so as to test theories or to artificially create

situations 1n laboratories so as to be able to present realistic
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ci1tuations to persons f(for training or other purposes). Many times,
tnvestigators will be aware that, 1n some domain of interest, sonme
particular conditions obccur with a given freguency. For example, it may
be known that some condition (@A) occurcs eighty percent of the time and the
alternative condition (B) occurs the other twenty percent of the time.
tecausze of incomplete understanding of what causes those conditions to
accur or not, the investigator does not know when to use condition A and
whern to use condition B. To overcome this problem, the simulation 1s
designed tc generate a random number between zero and one to help make
this decision, 1f the value of the generated randem number 15 .8 or
below, condition A 1s used, whereas condition B 15 used if the generated

random number is greater than .8,

This approach of using random numbers (usually generated by a
computer) to decide among two or more alternative conditions which have
differential probabilities of occurrence has been widely and successfully
used for many years in a large variety of simulations. The RSDV concept
incorporates this approach in experimental studies for determining what
tasks and environmental variable states will be used for collecting

performance data on a particular subject during a particular trial.

4.7 THE WHERRY, JR., SIMULATED DATA GENERATION TECHNIBUE

Another application of random sampling combined with simulation
15 a technigque developed 1n 1962 by this author for generating samples of
fictitious, or simulated, multivariate data samples each of which possess
characteristics (1.e., means, standard deviations, and correlations)
similar to the characteristics of known real data, To a large extent,
this particular technique is the most immediate historical antecedent to
the RSDV technigque. It may be helpful to the reader to understand the
particular research problem out of which the simulated data generation
technique first emerged., For this reason, the research problem 1s briefly
discussed in the following paragraphs; a more complete discussion of the
problem and its solution can be found in Wherry, Sr., Naylor, Wherry, Jr.

and Fallis (1964).

-------
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"ﬁ% 4.7.1 Generating Simulated Rating Data :2
iﬁ% The basic research question was concerned with determining if IE
3:& different strategies were being used by different military raters in ;;
g deciding upon their overall evaluations of their subordinates. More 24
;xiﬁ precisely stated, the problem involved a determination of the extent to i}fi
;;:E which various performance aspects were felt to be differenti1ally 1mportant :;i:r
jh;* by the raters. Typically, military personnel are routinely rated on a :f"
'i‘) number of standard variables. These ratings become part of the permanent : ‘
f;g records for those individuals. A person’s ratings may later be used to j.;*
%ié: help determine which of those ratees 1s to be promoted, selected for a
i*&: particular acssignment, nominated to be sent to a particular school, and so
is forth. Obviously, some rated variables will be mecre important than others h;
{‘;g for these different purposes. But even for the same purpose, various :?
i::i raters or rating reviewers may differ as to how important the different EE&%
K i; rated variables should be. To the extent that this is true, the raters or E;;Z
'f'f reviewers can be said to be employing different strategies in their :
‘%1?1 overall evaluations, even 1f there were complete agreement among the :j;i;
;;i} evaluators as to how the ratees should be scored on each of the separate Ejﬁﬁ
%i;: var1ables, Investigation of this particular problem was further 123?
camplicated by the fact that scores assigned on the rated variables were 3=
known to be related to each other to varying degrees. Here, then, was & ﬁ%{ﬂ
perfect example of the i1mportant "experimental" variables which &E%!
undaubtedly influence the performance of the evaluators being related in :tﬁt'

the real world., It would have been foolish and unrealistic to pretend
these variables were unrelated simply to be able to design an ANOVA study

to 1nvestigate their effects on the performance of evaluators.

It was reasoned, however, that 1f a large number of raters were

i :ﬁi acked to make an overall evaluation for each member of a fairly large
;Eji group of ratees {(based on preassigned realistic ratings), sufficient data
%i;i would then be available for determining 1f different strategies did, 1in

; fact, exi1st, and for comparing the relative i1mportance of the different
jlﬁé; variables for each rater. In actual practice, none of the raters had
;éﬁg; supervised the same subeordinates. Consequently, no data existed on which
:5zé§ the different raters could be directly compared. What was needed, then,

s were realistic sets of ratings on a3 fairly large sample ot ratees. It
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should also be obvious that 1t would also be desirable for that sample of :Ikt;
ratees to be a random one from the overall domain of ratees. Such ratings ::\f}
could be presented to the evaluators in guestion and, using them, they i(&i
could be asked to give their overall evaluation of each ratee. While no !?.{
such actual data existed, historical data were available on the means and &:EJ
standard deviations of the various rated variables and on how those i;ﬁ%
ratings correlated with each other,. :i}é
FE

I The Method for Generating the Simulated Data ftﬁ;
To generate a random sample of ratings, the established means, i&??

standard deviations and interrelationships were used as specifications for 3&5;
the domain of interest. The matrix of interrelationships was factor ".Qa
analyzed to establish both the rating variables’ loadings on each of the dbj?t

independent common factors needed to explain the interrelationships and

each variable's communality (i.e., the percentage of the variance of each Fatly

rated variable that was being explained by the common factors which had

been found). Next, additional independent factors were created to account xf?ﬁ
for the "unique" portion cf the unexplained variance of each rating ??flA
variable. This can be accomplished in two ways. Either a single "unigue" é?ﬁ}
tactor is created for each variable (where its only nonzero loading is ﬁ;:‘
for the variable 1n question and 1s equal to the square root of the .S}fé
quantity one minus that variable's communality), or both a "specific" Eiﬁﬁ,
factor and an "error" factor is created for each variable. The latter Eﬂ{ﬁ
procedure would be used when the "reliability" of the simulated scores is < Vo
an t1ssue 1n the study. In either case, the sums of the squares of the E?g?‘
independent factor loadings across any variable will now sum to one and if 3
the sum of the products of the respective values i1n any two variables will §§§$
e yield the correlation between those two variables. To simulate a single &}}:
h&;& ratee’'s ratings, a vector of normal random deviates 1s then generated by a :iijf
;%i? computer. This vector represents that i1ndividual's standard scores on :Eﬁjf
E%Ei each of the independent factors. The standard score for any rating ;i; ¢
vari1able for that i1ndividual i1s then obtained by summing the product of Ty
that individual s normal random deviates multiplied by their respective iﬁﬁ"%
loading on the 1ndependent factors. To obtain the raw score rating for igﬁ;
that simulated 1ndividual on that given variable, the simulated standard :&:ﬁ;
score 1s multiplied by that variable’'s known standard deviation and then G
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that variable’'s known mean is added to it. In this way, fictitious scores

gﬁ could be generated for any number of simulated ratees to be used as the ;&

i‘ stimulus material for the evaluators., Of particular interest i1s that, as ;;=’
the number of fictitious cases generated using this method gets larger and Eﬁ.?
larger, the means and standard deviations of the fictitious variable EE%E_'
scores should get ever closer to the true means and standard deviations of Ei;ﬁ:
those variables, and the correlations among the variables will get closer %;\ﬁ&
and closer to the actual correlations of those same variables. HRegardless ;fAil
of how small or large any sample of cases fgenerated in this way) 1s, each t:f-i
sample is actually an unbiased sample of cases from the specified y
population.

Because of the speed with which computers can perform these .£i€?
operations., hundreds of samples of simulated persons can be created in i};it
very short times. Despite the obvious utility of this approach, a basic Eginé
restriction of 1t was that it assumed normally shaped distributions ﬁL_4ﬁ
underlying each of the rating variables. In the original application of 3%3?%
the technique, this assumption was felt to be warranted; nevertheless, the 'iﬁﬁ~.
technique was still far more restrictive than it needed to be. The RSDV Eriré
technique incorporates many of the good features of this technique, bhut Eiwji
makes no requirement aon the shapes of any of the underlying distributions E&Eﬁ?
of levels for any task of environmental variable of interest. ;ﬁ:;g

‘- '.A‘ !
4,7.3 Other Applications of The Simulated Data Generatipn Teciininude i

The fact that the original simulated data generation method did ;%S??
assume underlying normal variates made it particularly applicable for use :%ﬁi
in a variety of studies to test the efficacy of different statistical :E;
approaches and tests which, themselves, already include assumptions of ;i !
normality of data distributions. These applications were usually i1n the )x{}
realm of testing and selection problems. For example, Hutchins (1970) 5?‘{*
used this technigque to i1nvestigate the efficacy of a multiple-battery t&gfj
approach for test-selection applications when the number of predictors is )
relatively large and the sample size 1s relatively small. Lane (1971) f
also used the technique to compare the Wherry, Sr. shrinkage eguation with 5{:
alternative ones proposed by Nicholson {1960) and Darlington (1968). ;E;S
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The technique has also been widely used in generating large
samples of simulated persons whose anthropometric measures conform to
actual, established anthropometric measures of known populations {e.qg.,
U.S5. MNavy pilots, U.S. Air Force pilots, etc.). These simulated persons
are then used to determine the percentages of such populations which will
be unable to reach various controls in a workstation (e.g., a pilot's
cockpit in a particular aircraft). The simulated data generation
technigue, thus, has also been useful in the solution of human engineering
problems as well as in solving problems in the testing and selection

realms,

In these subsequent applications of the simulated data
generation technigue, the simulated data were never presented to subjects
‘n a study (e.g., the raters in the original application of the method),
but were, instead, manipulated by computers for various purposes. The
technigue was so obviously applicable for rapidly generating unbiased
samples of fictitious multiple variable data which possessed normally
shaped distributions, that it was primarily recognized as a technique for
simulating samples of people. It immediately became very appealing for
the investigation of the efficacy of various statistical methods and
procedures. Because of the obvious acceptability to those realms, and
because of its dependence on normally shaped distributions, its oeriginal
purpose of generating the actual stimuli to be presented to subjects in an

experimental study was never considered to bhe one of its strong points.

The RSDV technique, however, completely removes all restrictions
on the underlying shapes of the variables’ distributions. Because of this,
the variables being simulated can equally well be any task and/or
environmental variables and need not be restricted to variables which
describe human's capabilities (which, in general, do have normally shaped
distributions). The RSDV concept can, thus, be thought of in terms of a
generalized experimental design procedure for deciding what stimulus
conditions will be presented to subjects on various trials of any
experiment. Its basic strength and power derives from its reliance on
random sampling theory. Because of this, by the end of the data collection

peri1od the experimenter will have randomly sampled the specified domains

u-‘-.~.~
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of interest and, thus, will be able to use those data to compute unbiased
estimates of Lhe performance means aind variances for those domains as a
whole, regardlecss of how complex those domains may be. The procedures for

conducting RSDV studies arediscussed in detail in the following section.
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5. THE RANDOM SAMPLING OF DOMAIN VARIANCE (RSDV) TECHNIQUE

9.1 THE OBJECTIVES OF THE RSDV TECHNIBUE

The Random Sampling of Domain Variance (RSDV) technique has
several main objectives. First, it has as one major objective the
providing of a sethodology for the simultaneous investigation of multiple
variables, each of which may have many different levels, in a controlled
experiment. Unlike ANOVA, which has severe limitations on the total
number of variables and levels within variables that can be investigated
in a single study, the RSDV technique is, essentially, unrestricted. The
second, and equally important, objective of the RSDV technique is to allow
the results obtained from RSDV studies conducted in a laboratory setting
to generalize to the real world. A third objective of the RSDV technigue
is to serve as a theoretical bridge for moving between laboratory and

field studies.

In an earlier section, the advantages of controlled
experimentation were enumerated. The RSDV technique permits all of those
advantages to be fully realized in that: (1) the events of int=rest which
will occur can be controlled so that the experimenter can be fully
prepared to observe and/or record the behavior being studied; (2) the
sequence of events which occurred can be known and can be repeated, if
desired, by either the experimenter or others to validate the results
obtained; and (3) the experimental conditions can be systematically varied
to determine concomitant variation in the criterion (or criteria). Later,
it will be seen that the method used for systematically varying the
experimental variables in RSDV studies is quite different from the method
normally used in systematically varying the main effects in an ANOVA

design.



9.2 THE EFFICACY OF RANDOM SAMPLING
A basic difference between RSDV and ANOVA 1s that ANDVA

typircally uses repeated and exhaustive sampling of the same few levels and

few variables while RSDV utilizes a far more efficient random sampling of
any number of levels for any number of experimental variables., That 1s,
ANOVA tends to require the experimenter to repeatedly sample the same

levels of variable A for every level of variable B used i1n the experiment.

RSDY does not require this for two very good reasons. First, and,

perhaps, most importantly, the actual variables A and B may not be
independent of each other i1n the real world. 1If they are not 1ndependent

1n the real world, then the ANDVA strategy forces the experimenter to

collect data which are, at best, not particularly representative of
si1tuations in the real world, and, at worst, may even be drastically

misrepresentative of the real world. [If the ANOVA method forces the

collecting of data which are not representative of the real world, then

estimates of performance pased on those unrealistic situations cannot lead

to unbiased estimates of performance in the real world. Secondly, by

randomly sampling more of the possible (and probable) combinations of A

and B, the experimenter ensurec an unbiaczed estimate of both of those
variables and any concomitant performance variation they may be
responsible for 1n the criterion. When the actual population of effects
of i1nterest consists of multiple variables and multiple levels within those
variahles, exhaustive sampling ot all possible combinations may be neither

prudent nor feasible whereas a random sampling of those possible

combinations f{in proportion to their likelihood of occurrence in the real

world) w#ill always be possible, obviously more efficient, and certainly

more prudent since such samples do lead to unbiased estimates of the

performance of interest.

PROCEDURES FOR CONDUCTING RSBY STUDIES

wn
L

The capability of the RSDV technigue to provide a means by which
answers to complex and interesting real world problems can be obtained
trom experimentally controlled laboratory studies dictates a need for a
systematic method for accomplishing such studies. There are four major

phases 1nvolved i1n conducting RSDV studies. They are:
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? 1. specifying the domains of interest
§ 2. selecting the zample of situations to study
:: Z. creating the si1tuations and collecting the data, and
: 4, analyzing the data and drawing i1nferences and conclusions.
% The third phase {1.e., creating laboratory situat:ioncs and
»J collecting data) 15 no difterent for RSDV ctudies than for other types
~\ fe.g., ANOVA} of cstudies. Consequently, no further discussion of that
. phase wi1ll be provided here. Also, the fourth phase (1.e., analyzing the
5 data and drawing i1nferences and conclusions) presents no novel problems
;f tor RSDY studies. An RSDY study, of course, eliminates the possible use
Y of ANDVYA as the analvtical approach and requires usage of one or more of
;: the classical amultivariate techniques {(e.g., multiple correlation, factor
A: analysis, etc.). Some possible approaches to how these multivariate
i: techniques could be used to analyze the data from RSDV studies were
X previously discussed.
,d The first two phases of RSDV studies represent new kinds of
E: activities not required by ANOVA studies. 7To a large extent, the
; activities required in these phases are very closelv related to modeling
ﬁ; and simulation. Many researchers may be unfamiliar with this field.
fi: The following sections provide some suggested approaches for nhow one cen
lf: efficiently and effectively meet the requirements for accomplishing the
e activities required during the first two phases.
:
}r: 5.3.1 Specifying the Domains of Interest
32 Many passible domains of interest exist in the real world, and a
; researcher is free to choose the particular combinations of people, tasks,
;: and environments to be studied. A given researcher’'s concern with some
é; real world problem should dictate what particular categories of people,
;E: tasks, and environments are to be specified, but the scope of these domain
i categories may range from being quite narrow to very broad. The
;% requirement to specify the particular real world of interest by specifying
:i the people, task, and enviroenmental domains is needed to resolve possiale
:{ ambiquities of what is actually being studied. It must be recognized,
;l however, that 1t is probably i1mpossible to ever completely specify all
B
é;.
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possible details about a given real world of interest. It i1s highly e«
l1kely that no researcher really knows or understands all the details ;ﬁ;%
about some real world of 1nterest. For this reason, a distinctien can be :ﬁﬁﬁ;
made between the actual real world (RRW) ot i1nterest and the specified E-b“
real world (SRW) of 1nterest. A researcher can discuss the ARW ;jEE
1n very general terms. For example, a researcher might typically say that i;x:
he 1s i1nterested 1n studying “the performance of assembly line workers who ‘ti“t
have to make rapid decisions under noilsy conditions" or “the performance %{$;
of military tactical officers who must assess and evaluate complex combat :gt{{
situations during periods when extreme danger 15 imminent". We may note F?}i
that both of these statements contain 1nformation about the people-domain C;Q%.
of interest (1.e., "assembly line workers" and “military tactical 1“_
officers”"). Both contain information about the task-domain of interast
{1.e., "make rapid decisions” and "assess and evaluate complex combat
o sttuations"), and both contain information about the environmental-domain
%;:i of intecrest (i.e., "under noisy conditions" and "during periods when
fJ:; extreme danger is imminent”). But, in general, while such statements may
i :ﬂ provide a pireliminary global definition of the ARW, they tell others
'%ﬁ? precious little about the specific composition of the respective people,
[ task, and environmental domains in those ARWs. More to the point,
igﬁ however, is the fact that merely studying, say, some assembly line workers
5}2 making some rapid decisions under some noisy conditions will probably not
”ﬁg he a random (or representative) sample of that total domain. If that is
\;). true (and tnere is no reason to believe that it is not), then the e
T*F; investigator should not try to generalize his results to the larger, more ﬁ?‘af
5¢£: inclusive domains which were only globally stated. 5
r.t,).,
i To a large extent, this problem 15 identical to the one 5% 'ﬁ
;;%i' concerning random and fixed models in ANOVA. The RSDV procedure does not Eﬁ:*f
-#{{: demand that the investigator specify the people, task, and environmental :¥”;\
%;' domains in which he i1s interested. But, the RSDV procedure does insist {{5:{
'\ that the investigator should fairly precisely specify the people, task,
f;;: and environmental domains that were randomly sampled during the course of Ei“:i
:;i; the study. Obviously, it is to thaose domains, and only those, which the 'f
?};1 obtained results can be generalized with any great degree of confidence. )
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These specifications begin with the names of the variables which tﬁzz'
describe the composition of the people, task, and environmental domains ti;{t
that will be sampled 1n the study. Such variables will hereafter be :ii&é
referred to as the domain descriptor variables. Thus, in reporting an .
RSDV study, the researcher shtould i1nclude a section entitled “Domain éj;_
Descriptor Variables." Three subsections should be included for the ijiw
people domain, the task domain, and the environmental domain. The nature ¢%3;§
of domain descriptor variables should be such that every element within fv.
the particular applicable domain must be able to receive a score on each :%é¢
named varilable., For example, each person in the people domain must be %&ﬁﬁ
able to be scored on each people domain descriptor variable. Similarly, Ei;?
every type of task which 1s considered to be part of the task domain of i‘;}
interest must be able to be scored on each task domain descriptor ;1¥i
variable, and so forth. EE&:
.&'::Cf;"
Having decided on the various variables to be used as domain b,

descriptors, the next step is to determine or estimate the probable

2
J,
" .l

- e

distributions of the possible scores on each domain descriptor variable in qqrﬁ

that portion of the real world in which the researcher is interested. For 2& é

example, with regard to the people domain, personnel records containing [:,;

many different variables may already exist on actual persons in the people ;i%k‘

domain of interest. Prior analyses of such data may already be available i%?T

which provide information on the distributions of those variables’ scores g&f

and on the correlations among those variables. If not, a random sample of =

data from those personnel records could be obtained and such information

could be calculated. If po prior data has been cellected on the people 1n

the people domain of i1nterest, it certainly indicates that the researcher

probably knows very little about the elements of that domain and its

overall composition. If such is the case, it 1s certainly advisable for

the researcher to take time to decide what variables would adeguately

describe the domain of interest and then to gather some actual domain

descriptor variable data on a random sample of pecple from that domain of A

interest before going on with the study. ;tﬁ;

i

For the task domain of 1nterest, it i1s even more likely that no :é§§§

records will exist which can be used to locate various tasks of interest o




on task descraiptor variables. Obviously, 1t 1s alsoc i1mpossible to "test a
task”" to see what scores 1t deserves on the various task descriptor
varrables. In such cases, the researcher may have to employ "task

experts” (1.e., personnel from the real world of interest who are
itntimately familiar with the task domain 1n question) to not only help
describe what tasks actually belong 1n a given task domain of interest,
but also for estimating the relative frequencies with which those tasks
occur 1n the task domain of 1nterest. It should be recalled that each
task 1ncluded 1n a task domain of interest must be able to be "scored" on
each of the task descriptor variables being used as part of the task
domain description. The insistence on meeting this regquirement 15 that
almost any generic task (e.g., tracking, data entry, target recognition,
etc.) has a large number of parameters on which that generic task can be
varying and st:l]l be that kind of a task. A tracking task, for example,
may be pursuit or compensatory, the target i1tself may be driven by a
virtually 1nfinite number of complex signals, the types of displays used
to inform the tracker of the current situation may vary widely, the

control devices furnished to the tracker for manipulating the acquisition
of the target may also vary widely, and so forth. However, as long ac one
stays within the tracking task domain, the same variables should be used
to describe any type of tracking task. The same observation can be mads
with regard to, say, a data entry task. That 1s, a large number of
variables will be needed to precisely describe each possible kind of data
entry task. But the variables needed for describing a tracking task are
not the same as those needed to describe, say, data entry tasks. Indeed,
many of the tracking task descriptor variables would be irrelevant for a
data entry task and vice versa. Because of this, we can readily recognize
that there are multiple task domains. A researcher may, of course, choose
to include multiple task domains in a given study. This is certainly
permissible, but each task domain i1ncluded in the study must have its own
set of task descriptor variables. And, within every task domain 1ncluded,

the "position” of each possible task 1n that domain must be estimated for

§ora

each of its descriptor variables, and the frequency with which those tasks

L -

occur 1n the real world of i1nterest should be specified. From such data,

1t 15 possible to calculate the interrelationships of the task descriptor

o

variables. Volume 4 of this series gives examples of various task
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domains that are applicable for a variety ot jobs accomplished by Naval
Flight Dfficers. An example of variables used to generically describe

some of those task domains is also furnished i1n the document.

Similar determinations (of distributions and interrelationships
of descriptor variables) should also be made for the environmental domain
ior domains) under which the persons i1n the specified people domain must
perform the tasks i1n the specified task domain{s). Many tasks done by
humans are accomplished under conditions and 1n surroundings that would not
differ significantly from those conditions and situations that typically
exist 1n a laboratory setting. 1f this 1s the case, then the researcher
should stipulate that 6 rather than going into an overly elaborate
description of, say, what a typical office 1s like. However, many human
tasks of interest must be conducted tnder environmental conditions which,
unless they are properly simulated 10 the laboratory, would be quite
different and those differences could significantly effect the performance

ot the people 1n the study.

Finally, if one 1s 1nterested in generalizing the results to a
particular real world of interest, a determination should be made for the
interrelationships among the people, task, and environmental variables.
That 1s to say, some "kinds" of people 1n the people domain of interest
may do certain "kinds" of tasks in the task domain more frequently than
do other kinds of people. Similarly, some kinds of tasks may be more
prevalent under certain environmental conditions than others are. Again,
estimates of this type of 1nformation may require "experts" from the field
who have an 1ntimate familiarity with what typically happens in the real

world of i1nterest.

The need for these aforementioned specifications of the domains
of 1nterest 1s that, as researchers, we would like to be able to “"f1ll a
large box" with the correct populations of people, task, and environment
combinations so that, ultimately, we can randomly draw a sample from that
box and collect our research data on the performance of those people doing
those tasks in those environments. 1f we could do this, then, we know

that performances obtained from that sample will yield unbiased estimates

it B
PN

Bl A
f;ﬂ(‘ik‘ﬂ;\{- :

s .

A s

Py
= e all

3 L 4
¥




‘. ¥ 0 - . T % k. « S hW Ve T , o fi Saliabodulaiat o R T L TwV ¥
N

44

A%

Y4

p

§¢§~ of the performances for the entire joint populations of people, tasks, and
T

oY environments of i1nterest to us. The need for the detailed specifications
Yegh

if ' of the distributions and i1nterrelationships for the people, task, and

'x, environmert descriptor varrables 1s not for ultimately collecting data on
zﬁ{: each possible combination, but, rather, to be able to mathematically

%ij- specify the populations of 1nterest so that we may, at a later time,

ir}: obtain an appropriate random sample from it.

Ao

R .

250 SRS The Number of Variables Needed to Describe a Domain

n-"\.*

- From the standpoint of being parsimonious, a researcher would
B

{”{ prefer to adequately describe any given domain (people, tasks, or

i

environments) with as few descriptor variables as possible. However, a

researcher may not know what minimum sized set of variables will

P S g
g

accomplish that gual for a given domain of interest. Usually, there will

L0

be a variety of ways to describe pepple, tasks, and environments. 1§ a

Py s o e gum e S
x
X
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igi researcher initially uses more variables than needed to adequately

"i: describe a given domain, no harm will be done; some information will be

:{i; overdetermined., If some variables contain information which overlaps that

’i% centained by other variables, this redundant information should be

I B reflected in a relationship between the scores on those variables. While

g;ﬁ a researcher is not obligated to include every type of descriptive

5?&: vari1able which could be used to describe a domain, 1t 1s certainly

?Eg preferable to overdescribe the domain than to use so few variables that

J the domain 15 obviously incompletely or ambiguously described. .
;i:: 5.3.1.2 format for the Domain Descriptor Variables k
gf;; The important pieces of information needed about each domain f \
. descriptor variable, in addition to a verbal description of the variable, b
f%i include the vector of applicable scores for that variable, the relative ;fg#ﬁ
gi“ trequencies with which those scores are assumed to occur within the domain i
ﬂ;? of interest, and the relationship of each variable with the other domain

'Lj descriptors. The researcher also may wish to include the rationale for

?;ﬁ why each particular domain descriptor was chosen and how estimates of the

gé; trequencies and carrelations with other descriptors were obtained (e.g.,

g%E existing analyses, analyses based on random samples of available data,

n data collected by the investigator in order to be able to describe the

2 5 -8
J Q)
K1)
[}
: G Y T - N ) A U T Sy
) .{, QAN S e T \f\_ A \\ \Q x\x \\ o x“ ﬁu”»'\“-f ‘}“xxai\ LRI A R gy
L(j‘-e‘ J‘;{f.& L -(«) }"KH IR hNOSAN ‘\-lx! N " I_ o e )
; ot ;

4 ' O g , o -‘> B »\x AT . o A
AR RS RAE PR 3 AR,

.lq..A .‘. ‘ ‘ “N FJ\“X *i 19 l. -‘. .l



. 'i"-‘i‘ V'h”i ""Qﬁ |: ;'-i‘ "'q.' 7 'v«‘ K WS T W _ -.-:. “of i'V"l‘l' “ “<;‘; i '4‘,

\ domain, "expert" estimates, etc.,). I1f a descriptor variable does have a

distribution whicn conforms for 1s assumed to conform) to some thecretical

distribution shape (e.g., normal, rectangular, or binomial), then

inclusion of the mean and standard deviation for those variables contains

sufficient i1nformation that the frequencies of various scores need not be

given. A multinomial variable (1.e., one which has more than two possible

scores) which does not conform to a well-known theoretical distribution

can be sufficiently described by the vector of probabilities associated

which each of the possible scores. A continuous multinom:ial variable can

usually be adequately described with, say, ten to twelve discrete

intervals,

Seiecting the Situativncs to be Studied

wn
4
o

Having derived the speciiied domains, the researcher now has

specified all the variables which define the model of the real world which

1s to be the subject of the RSDY study. The researcher 15 now ready to

select situations from that domain. This must be accomplished using

random sampling 1f results of the study are to be general:ized to the

entire modeled real world., Use of the computer 1s especially helpful 1n

doing this phase of the effort. Several possible methods will be

discussed. Each method should lead to a sample of creatable situations

which, taken together, will represent a random sample of the variation

within all of the domains being studied. Volume 5 af this series contains

some examples of how a computer can be used to randomly sample a fairly

complex domain which requires many different variables to describe 1t.

5.3, 2.1 Selecting the Sample of Feople to Study

In a human performance study, the actual people on whom data

will be collected cannot be created, but should be acquired by either

bringing i1nto the laboratory a random sample of persons from the specified

people domain, or by going i1nto the field with a portable laboratory and

collecting data on a selected sample from the field. This selected sample

from the field must be carefully constructed so that 1ts final composition

closely matches the people domain specifications. I+ a given field site

has more cf a certain type of person than the domain as a whole, then

relatively fewer numbers of that type of person should be selected.
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Techniques for stratified random sampling to accomplish this purpose are

SR
Aut A

well known and discussed i1n other sources.

N,

= 5.3.2.2 Selecting the Sample of Tasks and Environments

fﬁ At the time when the study 1s actually conducted, the selected
;i tasks and environments to be presented to the selected persons being

%B studied must be available. This means that whatever tasks are to be

studied must be able to be simulated at the appropriate times. It must be
remembered that the objective of the RSDV study 1s, 1n part, to determine

how the various elements of the real world tasks and environments

R

tnfluence human behavior. Theoretically, this goal can be accomplished

-ﬁ’z.‘;rll‘i o

-t

using erther of two methods. The first method 1s referred to as the "real

o |
o !
[y -

task" method. It involves simulating versions of the actual real world

. e

tasks 1n the laboratory. The second method is referred to as the "generic

P g )

task" method and involves creating tasks which contain appropriate

mixes of the elements of the real world tasks, but no single generic task

P4

may be exactly like any known real world task. The former method is

o

. A A

sometimes easier to use because the actual real world tasks can be

- Kt .
Rty
=

understood and simulated with relative ease. The latter method may be

more difficult when it comes to trying to invent a generic task (for use

T

1n the laboratory) which has a combination of task elements in 1t which

make 1t like real world tasks but not necessarily identical to any known

e n,-'.ao.dil o
.‘w

real task.

)

r

XN

There are excellent reasons for using either method. For

example, when the real task method has been used, the validity of task

,,.
Feory

performance in a laboratory study can be more easily determined by

KA

comparing performance on those same tasks in field situations. On the

other hand, 1f the generic task method is used and performance on actual

- o
ol

|i real world tasks i1n the field can be predicted by the results obtained
N . .
: from the laboratory study, then one should have greater confidence in the
h!

g ability of the resuits to generalize and to predict task performance on
{f. new real world tasks which might occur 1n the future.
5 |
;§ Selecting a random sample of so-called real tasks requires a
‘,
n somewhat different approach than that used for selecting a random sample
3
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[ ot generic taske. If one uses the real task method, then the frequency

;E with which each of the real tasks i1n that domain should be known. If we

;; assume that there are K real tasks within the domain then the relative

f trequencies with which those tasks occur can be converted into

‘: probabilitires such that the probabilities across all K tagks will sum to

S one. The tasks, themselves, can be randomly numbered from { to K and

‘5 their respective probabilities can be entered 1nto a vector having X

y entries. This vector can then be converted into a cumulative probability

? vector by adding the sum of all the preceding entries to each consecutive

q entry, Thics vector's final entry must, of course, be egual to one. To

é determine which of the K tasks to utilize on any given trial, the computer
can generate a random deviate (a value having equal probability for all

L values between zero and one). The computer can, starting with the first

;? entry 1n the cumulative probability vector, compare the generated randonm

z% number with each entry 1n the cumulative probability vector. Whenever the

generated random number is found to be equal to or less than the entry in
the cell being compared, the process is stopped and that particular task
15 selected as the appropriate one. Following this simple procedure,

which 15 extremely easy to program for a computer, will assure that the

task selected 15 a random sample from the specified task domain. To

select additional tasks, additional random numbers are generated and used

1

L]

o) as described above. The entire sample of tasks selected in this way must,
b by definttion, be a2 random sample of the specified task domain, regardless
& of the number of tasks in the specified domain and regardless of the

]
e N

actual size of the sample drawn from that domain.

L
- o o

When the "real task"” method is used, it is probably desirable to

Farsr

e

separately estimate the probable frequencies of the various possible

ﬁ% environments in which each task must be done. Thus, each real world task

R 1n the domain can have a separate vector of probabilities of each possible

,g environment. The computer, having determined a given task to use can now
retrieve the appropriate environmental cumulative probability vector for

‘Z that task, and, by generating another random deviate, can select the

?;‘ enviranment to pair with that selected task. This procedure also assures

IHE a random sample of the environment domain and allows any kind of suspected

or known task-environment interaction to be properly represented in the
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total zample of tasks and environments drawn, It 1t turne ogut that tnat
there are no real :nteractions between tasks and environments (1.e., a
particular environment would have the same probability of occurring for
any selected tast), then the same environmental cumulative probability
vector would be applicable ftor all tasks, and the computer will not have
to distinguish which task 1t has selected to be able to determine what
environment 15 teo be randomly paired with 1t. This 1s tdentical to =aying

that the environments are assumed to be 1ndependent of the tasks.

In the "real task" appreoach, the matrix of interrelationships
among the task descriptor variables could be 1gnored and the tasks can be
selected strictly on the basis of their probable frequencies. From our
earlier discussion on the random sampling of 1tems having multipie
attributes, 1t should be obvious that 1f the selection of 1tems from that
domain 1s a random one, we should also have obtained a random sample of
the values for each ot the domain descriptor variables. The "generac
task” aopreocach can be thought of as the reverse of this process in that,
for 1t, we first obtain a randomly selected value for each task domain
descriptor variable and, then, use these variables’ values to define a
generic task. The procedure to accomplish this 1s very similar to that
used 1n the "simulated data generation" technique discussed earlier. It
starts by factor analyzing the 1nterrelat:onships among the tasks and
environments to obtain the i1ndependent common facters and to determine how
much of the variance of each domain descriptor 1s being accounted for by
those common factors. Additional "unique" 1ndependent factors are then
created so that all of the var:iance of each variable 1s accounted for.
For each factor {(common and unigque) a cumulative probability vector must
then be created so that it can subseguently be used, in conjunction with a
random deviate generated by the computer, to determine a standard score
tor each factor. 7To obtain each generic task description, the computer
will generate a random deviate for each independent factor, convert those
values into a standard scores for each factor, and multiply the standard
scores by the respective factor loadings for each domain descriptor
variable. This will result 1n a each generic task having an assigned
value for each descriptor variable. The i1investigator can take these

descriptions and creite a generic task that matches those descriptions.
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As mentioned earlier, every generic task selected in this fashion will
fall somewhere within the task domain, but it may not correspond perfectly
with any known real task. A similar statement can be made with regard to
the generic environment derived in this manner. In essence, the generic-
task (and generic-environment) method derives multiple attribute values

for a task and environment that is to be simulated in the laboratory.

Since the generic tasks and envi: :nments are derived from
randomly sampling the task and environment domsains, as described by their
respective domain descriptor variables, the obtained sample of generic
tasks and environments specified by the above process will also represent
a random sample of those domains. One possible approach is to have the
computer determine a random sample of tasks and environments and then to
present all of them to each member of the sample of persons being used.
In this way, correlations across people for all sampled task and
environment combinations can be computed. This correlation matrix can be
factor analyzed to deteraine how many different independent factors are
influencing performance in the modeled domains. The obtained factors can
be treated as criterion variables to be predicted using multiple
correlation where the people, task and environment descriptors are the
potential predictors. This will permit a prediction equation to be
developed that determines the best weights for those variables to predict
the performances obtained in the study. These weights can also be used to
predict how any of the actual real tasks would have been performed had
they been used instead of generic tasks. Such scores could then be
compared with actual performance of those same persons doing a sample of

known real tasks.

g = 13
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g?dt. This document has presented the rationale and backaround for the
)
; {{~ fandom Sampling of Domain Variance (RSDV) technique. The KSDV technique
Y
’-')' 1s seen as a powerful alternative to the Analysis of Variance (ANDVA)

i)
s, method, especially for the purpnses of experimental design. The historical
f;ij: dissatisfaction with ANOVA results, and their traditional 1nability to
i;}f generalize to real world problems was gescribed. It was concluded that
A5

xe ANOVA, while being a valuable technique for 1nvestigating problems 1n

1
';kh: which there are only a very few 1mportant variables which could effect
,F%?: human performance, was severely limited and restricted by 1ts requirement
~-_1-

R for proportional cases 1n data cells and 1ts reguirement ftor forcing the
N,
{” < experimental variables to be i1ndependent of each other. These
i;{; requirements of ANOVA not only restrict 1ts applicability to fairly simple
YA _
:.':' JrCDLems. JUt TNev aisc Trecuently rarce the coliecticn of cata which mav
e
be misrepresentative of the real world situat:ons of i1nterest to the
X investigator.
{

S

RN The various decisions confronting 1nvestigators who are

WAy i
%};} interested i1n conducting human performance studies were discussed. How
Lo
“": those decisions can 1mpact the results and conclusions reached by an
] ;;# investigator waz also described. Decisions tacing the i1nvestigator fall
7 )
% o into three major categories: {a) what will be studied, (b) what
S
%{Vq performance measures will be recorded, and (c) what analysis methods will
s 3
e be used. One of the problems which became apparent during the development
i;}~ of the RSDV technique was that investigators sometimes have little
figﬁ specific understanding of the composition of the real world for which they
”\_ desire to do research. Hoth the ANOYA technique (at least while using

fixed and mixed effects models) and field study technigques do not require

the tnvestigator to specify the real world to which they would like to be

able to generalize their results., Failure of 1nvestigators to specrfy the
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people, task, and environment domains in human performance studies have
resulted in their subsequent inability to recognize that data collected by
them had little hope of being representative of the real world

per formances of humans for which they had professed an interest. The RSDV
technique recognizes this drawback and makes domain specification a

central part of conducting research studies of human performance.

The principles and a variety of applications of random sampling
were described. The RSDV technique was shown to be a natural extension to
experimental design randomization procedures and an obvious application of
random sampling similar to that which underlies the theory of significance
testing. The actual random sampling during an RSDV study is for the
purpose of determining what task and environment combinations will be
studied in laboratory situations so that the investigator can be assured
of obtaining unbiased estimates of performance in the specified real world
of interest. The RSDV technique is also seen to be a natural extension of

mathematical modeling and simulation technology.

Procedures for how investigators might go about specifying the
people, task, and environmental domains of interest for RSDV studies were
described. The usage of computers to ensure appropriate random sampling
from those specified domains was also discussed. Finally, how various
multivariate procedures, including multiple correlation and factor
analysis, can be used to analyze human performance data collected in RSDV

studies was discussed.
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